Based on the conventional approach, the trapped oil in rock pores can be easily displaced when a Winsor type (III) micro-emulsion is formed in the reservoir during surfactant flooding. On the other hand, the Winsor type (III) involves three phase flow of water, oil, and micro-emulsion that causes considerable oil phase trapping and surfactant retention. This work presents an experimental study on the effect of micro-emulsion phase behavior during surfactant flooding in sandstone and carbonate core samples. In this study, after accomplishing salinity scan of a cationic surfactant (C16–N(CH3)3Br), the effects of Winsor (I), Winsor (III) and Winsor (II) on oil recovery factor, differential pressure drop, relative permeability, and relative permeability ratio were investigated extensively. To carry out a comparative study, homogeneous and similar sandstone and carbonate rocks were selected and the effects of wettability alteration and dynamic surfactant adsorption were studied on them. The results of oil recovery factor in both rock types showed that Winsor (I) and Winsor (III) are preferred compared to Winsor (II) phase behavior. In addition, comparison of normalized relative permeability ratio at high water saturations revealed that Winsor (I) has more appropriate oil and water relative permeability than Winsor (II). The results presented in this paper demonstrate that optimum salinity which results in higher recovery factor and better oil displacement may occur at salinities out of Winsor (III) range. Therefore, the best way to specify optimum salinity is to perform core flood experiments at several salinities, which cover all phase behaviors of Winsor (I), Winsor (III), and Winsor (II).

References

References
1.
Paul
,
B. K.
, and
Moulik
,
S. P.
,
2001
, “
Uses and Applications of Microemulsions
,”
Curr. Sci.
,
80
(
8
), pp.
990
1001
.
2.
Penny
,
G.
,
Holcomb
,
D.
, and
Pursley
,
J. T.
,
2005
, “
Microemulsion Additives Enable Optimized Formation Damage Repair and Prevention
,”
ASME J. Energy Res. Technol.
,
127
(
3
), pp.
233
239
.10.1115/1.1937419
3.
Kamath
,
K.
, and
Yan
,
S.
,
1981
, “
Enhanced Oil Recovery by Flooding With Dilute Aqueous Chemical Solutions
,”
ASME J. Energy Res. Technol.
,
103
(
4
), pp.
285
290
.10.1115/1.3230853
4.
Smith
,
G. D.
,
Donelan
,
C. E.
, and
Barden
,
R. E.
,
1977
, “
Oil-Continuous Microemulsions Composed of Hexane, Water, and 2-Propanol
,”
J. Colloid Interface Sci.
,
60
(
3
), pp.
488
496
.10.1016/0021-9797(77)90313-7
5.
Healy
,
R. N.
, and
Reed
,
R. L.
,
1977
, “
Immiscible Microemulsion Flooding
,”
Soc. Pet. Eng. J.
,
17
(
2
), pp.
129
139
.10.2118/5817-PA
6.
Hirasaki
,
G. J.
,
Miller
,
C. A.
, and
Puerto
,
M.
,
2008
, “
Recent Advances in Surfactant EOR
,”
SPE Annual Technical Conference and Exhibition
,
Society of Petroleum Engineers
,
Denver, CO
, Sept. 21–24, Paper No. SPE-115386-MS.
7.
Yadali Jamaloei
,
B.
,
Kharrat
,
R.
, and
Asghari
,
K.
,
2012
, “
The Influence of Salinity on the Viscous Instability in Viscous-Modified Low-Interfacial Tension Flow During Surfactant–Polymer Flooding in Heavy Oil Reservoirs
,”
Fuel
,
97
, pp.
174
185
.10.1016/j.fuel.2012.02.050
8.
Huh
,
C.
,
1983
, “
Equilibrium of a Microemulsion That Coexists With Oil or Brine
,”
Soc. Pet. Eng. J.
,
23
(
5
), pp.
829
847
.10.2118/10728-PA
9.
Healy
,
R. N.
,
Reed
,
R. L.
, and
Stenmark
,
D. G.
,
1976
, “
Multiphase Microemulsion Systems
,”
Soc. Pet. Eng. J.
,
16
(
3
), pp.
147
160
.10.2118/5565-PA
10.
Huh
,
C.
,
1979
, “
Interfacial Tensions and Solubilizing Ability of a Microemulsion Phase That Coexists With Oil and Brine
,”
J. Colloid Interface Sci.
,
71
(
2
), pp.
408
426
.10.1016/0021-9797(79)90249-2
11.
Sheng
,
J.
,
2011
,
Modern Chemical Enhanced Oil Recovery: Theory and Practice
,
Gulf Professional Publishing
,
Elsevier, Burlington, MA
.
12.
Bansal
,
V.
, and
Shah
,
D.
,
1978
, “
The Effect of Addition of Ethoxylated Sulfonate on Salt Tolerance, Optimal Salinity, and Impedance Characteristics of Petroleum Sulfonate Solutions
,”
J. Colloid Interface Sci.
,
65
(
3
), pp.
451
459
.10.1016/0021-9797(78)90096-6
13.
Glover
,
C. J.
,
Puerto
,
M. C.
,
Maerker
,
J. M.
, and
Sandvik
,
E. L.
,
1979
, “
Surfactant Phase Behavior and Retention in Porous Media
,”
Soc. Pet. Eng. J.
,
19
(
3
), pp.
183
193
.10.2118/7053-PA
14.
Gupta
,
S. P.
, and
Trushenski
,
S. P.
,
1979
, “
Micellar Flooding-Compositional Effects on Oil Displacement
,”
Soc. Pet. Eng. J.
,
19
(
2
), pp.
116
128
.10.2118/7063-PA
15.
Pope
,
G. A.
,
Wang
,
B.
, and
Tsaur
,
K.
,
1979
, “
A Sensitivity Study of Micellar/Polymer Flooding
,”
Soc. Pet. Eng. J.
,
19
(
6
), pp.
357
368
.10.2118/7079-PA
16.
Sheng
,
J.
,
2010
, “
Optimum Phase Type and Optimum Salinity Profile in Surfactant Flooding
,”
J. Pet. Sci. Eng.
,
75
(
1
), pp.
143
153
.10.1016/j.petrol.2010.11.005
17.
UTCHEM-9.0, (
2000
), A Three-Dimensional Chemical Flood Simulator Prepared by Center for Petroleum and Geosystems Engineering, University of Texas, Austin, TX 78712.
18.
Santanna
,
V.
,
Curbelo
,
F.
,
Castro Dantas
,
T.
,
Dantas Neto
,
A.
,
Albuquerque
,
H.
, and
Garnica
,
A.
,
2009
, “
Microemulsion Flooding for Enhanced Oil Recovery
,”
J. Pet. Sci. Eng.
,
66
(
3
), pp.
117
120
.10.1016/j.petrol.2009.01.009
19.
Zhao
,
P.
,
Jackson
,
A.
,
Britton
,
C.
,
Kim
,
D. H.
,
Britton
,
L. N.
,
Levitt
,
D.
, and
Pope
,
G. A.
,
2008
, “
Development of High-Performance Surfactants for Difficult Oils
,”
SPE/DOE Symposium on Improved Oil Recovery
, Society of Petroleum Engineers, Tulsa, OK, Apr. 20–23, Paper No. SPE-113432-MS.
20.
Wang
,
D.
,
Liu
,
C.
,
Wu
,
W.
, and
Wang
,
G.
,
2010
, “
Novel Surfactants That Attain Ultra-Low Interfacial Tension Between Oil and High Salinity Formation Water Without Adding Alkali, Salts, Co-Surfactants, Alcohol and Solvents
,”
SPE EOR Conference at Oil & Gas West Asia
,
Society of Petroleum Engineers
,
Muscat, Oman
, Apr. 11–13, Paper No. SPE-127452-MS.
21.
Childs
,
J. D.
,
Acosta
,
E.
,
Scamehorn
,
J. F.
, and
Sabatini
,
D. A.
,
2005
, “
Surfactant-Enhanced Treatment of Oil-Based Drill Cuttings
,”
ASME J. Energy Res. Technol.
,
127
(
2
), pp.
153
162
.10.1115/1.1879044
22.
Ayirala
,
S. C.
, and
Rao
,
D. N.
,
2004
, “
Multiphase Flow and Wettability Effects of Surfactants in Porous Media
,”
Colloids Surf., A
,
241
(
1
), pp.
313
322
.10.1016/j.colsurfa.2004.04.047
23.
Abeysinghe
,
K. P.
,
Fjelde
,
I.
, and
Lohne
,
A.
,
2012
, “
Dependency of Remaining Oil Saturation on Wettability and Capillary Number
,”
SPE Saudi Arabia Section Technical Symposium and Exhibition
, Society of Petroleum Engineers, Al-Khobar, Saudi Arabia, Apr. 8–11, Paper No. SPE-160883-MS.
24.
Potter
,
G. F.
, and
Groves
,
D. R.
,
1989
, “
Displacements, Saturations, and Porosity Profiles From Steady-State Permeability Measurements
,”
SPE Annual Technical Conference and Exhibition
, Antonio, TX, Oct. 8–11, Paper No. SPE-19679-MS.
25.
Ayirala
,
S. C.
,
2002
, “
Surfactant-Induced Relative Permeability Modifications for Oil Recovery Enhancement
,” Master's thesis, Louisiana State University, Baton Rouge, LA.
26.
Dehghan
,
A. A.
,
Masihi
,
M.
, and
Ayatollahi
,
S.
,
2013
, “
Evaluation of Chemicals Interaction With Heavy Crude Oil Through Water/Oil Emulsion and Interfacial Tension Study
,”
Energy Fuels
,
27
(
10
), pp.
5852
5860
.10.1021/ef401361t
27.
Jeirani
,
Z.
,
Mohamed Jan
,
B.
,
Si Ali
,
B.
,
Noor
,
I.
,
See
,
C.
, and
Saphanuchart
,
W.
,
2013
, “
Formulation, Optimization and Application of Triglyceride Microemulsion in Enhanced Oil Recovery
,”
Ind. Crops Prod.
,
43
, pp.
6
14
.10.1016/j.indcrop.2012.07.002
28.
Drelich
,
J.
,
Fang
,
C.
, and
White
,
C.
,
2002
, “
Measurement of Interfacial Tension in Fluid–Fluid Systems
,”
Encyclopedia of Surface and Colloid Science
, Marcel Dekker, New York, pp.
3152
3166
.
29.
Vonnegut
,
B.
,
1942
, “
Rotating Bubble Method for the Determination of Surface and Interfacial Tensions
,”
Rev. Sci. Instrum.
,
13
(
1
), pp.
6
9
.10.1063/1.1769937
30.
Hu
,
H. H.
, and
Joseph
,
D. D.
,
1994
, “
Evolution of a Liquid Drop in a Spinning Drop Tensiometer
,”
J. Colloid Interface Sci.
,
162
(
2
), pp.
331
339
.10.1006/jcis.1994.1047
31.
Tiab
,
D.
, and
Donaldson
,
E. C.
,
2011
,
Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties
,
Gulf Professional Publishing
,
Elsevier, Burlington, MA
.
32.
Sendra,
2009
,
Sendra Simulator User Guide
,
Weatherford Petroleum Consultants AS
,
Trondheim, Norway
. Available at: http://www.sendra.no
33.
Rao
,
D. N.
,
Girard
,
M.
, and
Sayegh
,
S. G.
,
1992
, “
Impact of Miscible Flooding on Wettability, Relative Permeability, and Oil Recovery
,”
SPE Reservoir Eng.
,
7
(
2
), pp.
204
212
.10.2118/20522-PA
34.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Q. Appl. Math.
,
2
, pp.
164
168
.
35.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
36.
Lomeland
,
F.
,
Ebeltoft
,
E.
, and
Thomas
,
W. H.
,
2005
, “
A New Versatile Relative Permeability Correlation
,”
International Symposium of the Society of Core Analysts
, Toronto, Canada, pp.
1
12
.
37.
Brooks
,
R. H.
,
1966
, “
Properties of Porous Media Affecting Fluid Flow
,”
Proceedings of the American Society of Civil Engineers
,
J. Irrig. Drain. Div
.,
92
, pp.
61
88
.
38.
Seiedi
,
O.
,
Rahbar
,
M.
,
Nabipour
,
M.
,
Emadi
,
M. A.
,
Ghatee
,
M. H.
, and
Ayatollahi
,
S.
,
2010
, “
Atomic Force Microscopy (AFM) Investigation on the Surfactant Wettability Alteration Mechanism of Aged Mica Mineral Surfaces
,”
Energy Fuels
,
25
(
1
), pp.
183
188
.10.1021/ef100699t
39.
Zargari
,
S.
,
Ostvar
,
S.
,
Niazi
,
A.
, and
Ayatollahi
,
S.
,
2010
, “
Atomic Force Microscopy and Wettability Study of the Alteration of Mica and Sandstone by a Biosurfactant-Producing Bacterium Bacillus Thermodenitrificans
,”
J. Adv. Microsc. Res.
,
5
(
2
), pp.
143
148
.10.1166/jamr.2010.1036
40.
Jarrahian
,
K.
,
Seiedi
,
O.
,
Sheykhan
,
M.
,
Sefti
,
M. V.
, and
Ayatollahi
,
S.
,
2012
, “
Wettability Alteration of Carbonate Rocks by Surfactants: A Mechanistic Study
,”
Colloids Surf., A
,
410
, pp.
1
10
.10.1016/j.colsurfa.2012.06.007
41.
Standnes
,
D. C.
, and
Austad
,
T.
,
2000
, “
Wettability Alteration in Chalk: 2. Mechanism for Wettability Alteration From Oil-Wet to Water-Wet Using Surfactants
,”
J. Pet. Sci. Eng.
,
28
(
3
), pp.
123
143
.10.1016/S0920-4105(00)00084-X
42.
Delshad
,
M.
,
Macallister
,
D. J.
,
Pope
,
G. A.
, and
Rouse
,
B. A.
,
1985
, “
Multiphase Dispersion and Relative Permeability Experiments
,”
Soc. Pet. Eng. J.
,
25
(
4
), pp.
524
534
.10.2118/10201-PA
43.
Hawkins
,
J. T.
,
1989
, “
Comparison of Three Methods of Relative Permeability Measurement
,”
Log Anal.
,
30
(
5
), pp.
363
371
.
44.
Hirasaki
,
G. J.
,
1981
, “
Application of the Theory of Multicomponent, Multiphase Displacement to Three-Component, Two-Phase Surfactant Flooding
,”
Soc. Pet. Eng. J.
,
21
(
2
), pp.
191
204
.10.2118/8373-PA
45.
Solairaj
,
S.
,
Britton
,
C.
,
Kim
,
D. H.
,
Weerasooriya
,
U.
, and
Pope
,
G. A.
,
2012
, “
Measurement and Analysis of Surfactant Retention
,”
SPE Improved Oil Recovery Symposium
, Society of Petroleum Engineers, Tulsa, OK, Apr. 14–18, Paper No. SPE-154247-MS.
46.
Yassin
,
M. R.
,
Arabloo
,
M.
,
Shokrollahi
,
A.
, and
Mohammad
,
A. H.
,
2013
, “
Prediction of Surfactant Retention in Porous Media: A Robust Modeling Approach
,”
J. Dispersion Sci. Technol.
,
35
(
10
), pp.
1407
1418
.10.1080/01932691.2013.844074
47.
Ramirez
,
W. F.
,
Friedman
,
F.
,
Denoyelle
,
L. C.
, and
Shuler
,
P. J.
,
1980
, “
Adsorption and Interfacial Tension Dynamics of Surfactants in Porous Media
,”
SPE Annual Technical Conference and Exhibition
, Dallas, TX, Sept. 21–24, Paper No. SPE-9280-MS.
48.
Liu
,
Q.
,
Dong
,
M.
,
Zhou
,
W.
,
Ayub
,
M.
,
Zhang
,
Y. P.
, and
Huang
,
S.
,
2003
, “
Adsorption–Desorption–Related Interfacial Tension Behaviour in Chemical Flooding and Its Effect on Oil Recovery
,”
Canadian International Petroleum Conference
, Petroleum Society of Canada, Calgary, AB, June 10–12, Paper No. PETSOC-2003-186.
You do not currently have access to this content.