This paper presents finite-element simulation for hydraulic fracture's initiation, propagation, and sealing in the near wellbore region. A full fluid solid coupling module is developed by using pore pressure cohesive elements. The main objective of this study is to investigate the hypothesis of wellbore hoop stress increase by fracture sealing. Anisotropic stress state has been used with assignment of individual criteria for fracture initiation and propagation. Our results demonstrate that fracture sealing in “wellbore strengthening” cannot increase the wellbore hoop stress beyond its upper limit when no fractures exist. However, this will help to restore part or all of the wellbore hoop stress lost during fracture propagation.

References

References
1.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
2.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
(
1
), pp.
55
129
.10.1016/S0065-2156(08)70121-2
3.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P.-E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
782
.10.1016/0008-8846(76)90007-7
4.
Needleman
,
A.
,
1990
, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
,
42
(
1
), pp.
21
40
.10.1007/BF00018611
5.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.10.1016/0022-5096(94)90003-5
6.
Allix
,
O.
, and
Ladevèze
,
P.
,
1992
, “
Interlaminar Interface Modelling for the Prediction of Delamination
,”
Compos. Struct.
,
22
(
4
), pp.
235
242
.10.1016/0263-8223(92)90060-P
7.
Chen
,
Z.
,
Bunger
,
A. P.
,
Zhang
,
X.
, and
Jeffrey
,
G.
,
2009
, “
Cohesive Zone Finite Element-Based Modelling of Hydraulic Fractures
,”
Acta Mech. Solida Sin.
,
22
(
5
), pp.
443
452
.10.1016/S0894-9166(09)60295-0
8.
Needleman
,
A.
,
2014
, “
Some Issues in Cohesive Surface Modelling
,”
Procedia IUTAM
,
10
, pp.
221
246
.10.1016/j.piutam.2014.01.020
9.
Carrier
,
B.
, and
Grant
,
S.
,
2012
, “
Numerical Modeling of Hydraulic Fracture Problem in Permeable Medium Using Cohesive Zone Model
,”
Eng. Fract. Mech.
,
79
, pp.
312
328
.10.1016/j.engfracmech.2011.11.012
10.
Wang
,
Y.
,
Chen
,
J.
, and
Li
,
H. B.
,
2008
, “
Improved Cohesive Zone Model and Its Application in Interface Contact Analysis
,”
Acta Metall. Sin. (Engl. Lett.)
,
21
(
4
), pp.
295
302
.10.1016/S1006-7191(08)60052-6
11.
Roe
,
K. L.
, and
Siegmund
,
T.
,
2003
, “
An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulations
,”
Eng. Fract. Mech.
,
70
(2), pp.
209
232
.10.1016/S0013-7944(02)00034-6
12.
Anderson
,
T. L.
,
1995
,
Fracture Mechanics: Fundamentals and Applications
,
2nd ed.
,
CRC Publications
, Boca Raton, FL.
13.
Wojtanowicz
,
A. K.
, and
Zhou
,
D.
,
1998
, “
Borehole Failure Resulting From Formation Integrity (Leak-Off) Testing in Upper Marine Sediments Offshore
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
111
117
.10.1115/1.2795020
14.
Altun
,
G.
,
Shirman
,
E.
,
Langlinais
,
J. P.
, and
Bourgoyne
,
A. T.
,
1999
, “
New Model to Analyze Nonlinear Leak-Off Test Behavior
,”
ASME J. Energy Resour. Technol.
,
121
(
2
), pp.
102
109
.10.1115/1.2795064
15.
Nygaard
,
R.
, and
Salehi
,
S. A.
,
2011
, “
Critical Review of Wellbore Strengthening: Physical Model and Field Deployment
,”
AADE National Technical Conference and Exhibition
, Houston, No. AADE-11-NTCE-24.
16.
Mannon
,
T.
, and
Salehi
,
S.
,
2013
, “
Revisiting Well Design and Formation Pressure Prediction: A Case Study From Gulf of Mexico
,”
47th US Rock Mechanics Symposium
, San Francisco, June.
17.
Hubbert
,
K. M.
, and
Willis
,
D. G.
,
1957
, “
Mechanics of Hydraulic Fracturing
,”
Trans. Am. Inst. Min. Metall. Eng.
,
210
(
6
), pp.
153
163
.
18.
Kirsch,
1898
, “
Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre
,”
Z. Ver. Dtsch. Ing.
,
42
, pp.
797
807
.
19.
Deily
,
F. H.
, and
Owens
,
T. C.
,
1969
, “
Stress Around a Wellbore
,”
44th SPE Annual Fall Meeting of AIME held in Denver
, CO, Sept. 28–Oct. 1, SPE 2557.
20.
Bradley
,
W. B.
,
1979
, “
Failure of Inclined Borehole
,”
ASME J. Energy Resour. Technol.
,
101
(4), pp.
233
239
.10.1115/1.3446925
21.
Aadnoy
,
B. S.
, and
Chenevert
,
M. E.
,
1987
, “
Stability of Highly Inclined Boreholes
,”
SPE Drill. Eng.
, 2(4) pp.
364
418
.10.2118/16052-PA
22.
Aadnoy
,
B. S.
,
1988
, “
Modelling of the Stability of Highly Inclined Boreholes in Anisotropic Rock Formations
,”
SPE Drill. Eng.
, 3(3), pp.
259
268
.10.2118/16526-PA
23.
Zamora
,
M.
, and
Broussard
,
M. P. S.
,
2000
, “
The Top 10 Mud-Related Concerns in Deepwater Drilling Operations
,”
SPE International Petroleum Conference and Exhibition in Mexico
, Villahermosa, Mexico, Feb. 1–3, SPE 59019.
24.
Wang
,
H.
,
Soliman
,
M. Y.
, and
Towler
,
B. F.
,
2009
, “
Investigation of Factors for Strengthening a Wellbore by Propping Fractures
,”
SPE Drill. Completion
, 24(3), pp.
441
451
.10.2118/112629-PA
25.
Nes
,
O.
,
Kristiansen
,
T. G.
,
Hoursrud
,
P.
,
Fjaer
,
E.
, and
Tronvoll
,
J.
,
2012
, “
Drilling Time Reduction Through an Integrated Rock Mechanics Analysis
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032802
.10.1115/1.4006866
26.
Salehi
,
S.
, and
Mannon
,
T.
,
2013
, “
Application of Seismic Frequency Based Pore Pressure Prediction in Well Design: Review of an Integrated Well Design Approach in Deep Water Gulf of Mexico
,”
J. Geol. Geosci.
,
2
, p.
125
.10.4172/2329-6755.1000125
27.
Salehi
,
S.
, and
Nygaard
,
R.
,
2011
, “
Evaluation of New Drilling Approach for Widening Operational Window: Implications for Wellbore Strengthening
,”
SPE Productions and Operations Symposium
, OK, Paper No. SPE 140753.
28.
Salehi
,
S.
, and
Nygaard
,
R.
,
2012
, “
Numerical Modeling of Induced Fracture Propagation: A Novel Approach for Lost Circulation Materials (LCM) Design in Borehole Strengthening Applications of Deep Offshore Drilling
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, October, Paper No. SPE/IADC 135155.
29.
Aadnoy
,
B. S.
, and
Belayneh
,
M.
,
2008
, “
Design of Well Barriers to Combat Circulation Loss
,”
SPE Drill. Completion
, 23(3), pp.
295
300
.10.2118/105449-PA
30.
Fuh
,
G. F.
,
Beardmore
,
D.
, and
Morita
,
N.
,
2007
, “
Further Development, Field Testing, and Application of the Wellbore Strengthening Technique for Drilling Operations
,”
SPE/IADC Drilling Conference
, Amsterdam, Paper No. SPE/IADC 105809.
31.
Wang
,
H.
, and
Towler
,
B. F.
,
2007
, “
Fractured Wellbore Stress Analysis: Sealing Cracks to Strengthen a Wellbore
,”
SPE Drilling Conference
, Netherlands, Paper No. SPE/IADC 104947.
32.
Nandurdikar
,
N. S.
,
Takach
,
N. E.
, and
Miska
,
S.
,
2002
, “
Chemically Improved Filter Cakes for Drilling Wells
,”
ASME J. Energy Resour. Technol.
,
124
(
4
), pp.
223
230
.10.1115/1.1492841
33.
Abdo
,
J.
, and
Danish Haneef
,
M.
,
2011
, “
Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
014501
.10.1115/1.4005244
34.
ABAQUS,
2011
, “
Dassault Systemes Simulia Corp.
,” Version 6.11.
35.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
899
938
.10.1016/0020-7683(95)00255-3
36.
Ruiz
,
G.
,
Pandolfi
,
A.
, and
Ortiz
,
M.
,
2001
, “
Three-Dimensional Cohesive Modeling of Dynamic Mixed-Mode Fracture
,”
Int. J. Numer. Methods Eng.
,
52
(
1–2
), pp.
97
120
.10.1002/nme.273
37.
Irwin
,
G. R.
,
1960
, “
Plastic Zone Near a Crack and Fracture Toughness
,”
Proceedings of the Seventh Sagamore Ordnance Materials Conference
, Syracuse University, New York, Vol.
4
, pp.
63
78
.
38.
Falk
,
M. L.
,
Needleman
,
A.
, and
Rice
,
J. R.
,
2001
, “
A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture
,”
J. Phys. IV France
,
11
, pp.
Pr5-43
Pr5-50
.
39.
Rice
,
J. R.
,
1992
, “
Dislocation Nucleation From a Crack Tip—An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
239
271
.10.1016/S0022-5096(05)80012-2
40.
Geertsma
,
J.
, and
de Klerk
,
F.
,
1969
, “
A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures
,”
J. Petroleum Technol.
,
21
, pp.
1571
1581
.10.2118/2458-PA
41.
Mohammadnejad
,
T.
, and
Khoei
,
A. R.
,
2013
, “
An Extended Finite Element Method for Hydraulic Fracture Propagation in Deformable Porous Media With the Cohesive Crack Model
,”
Finite Elem. Anal. Des.
,
73
, pp.
77
95
.10.1016/j.finel.2013.05.005
You do not currently have access to this content.