Laminar burning speeds and flame structures of spherically expanding flames of mixtures of acetylene (C2H2) with air have been investigated over a wide range of equivalence ratios, temperatures, and pressures. Experiments have been conducted in a constant volume cylindrical vessel with two large end windows. The vessel was installed in a shadowgraph system equipped with a high speed CMOS camera, capable of taking pictures up to 40,000 frames per second. Shadowgraphy was used to study flame structures and transition from smooth to cellular flames during flame propagation. Pressure measurements have been done using a pressure transducer during the combustion process. Laminar burning speeds were measured using a thermodynamic model employing the dynamic pressure rise during the flame propagation. Burning speeds were measured for temperature range of 300–590 K and pressure range of 0.5–3.3 atm, and the range of equivalence ratios covered from 0.6 to 2. The measured values of burning speeds compared well with existing data and extended for a wider range of temperatures. Burning speed measurements have only been reported for smooth and laminar flames.

References

References
1.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion
,
McGraw Hill
,
Boston, MA
.
2.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(4)
, pp.
1437
1443
.10.1016/j.combustflame.2011.12.005
3.
Lewis
,
B.
, and
VonElbe
,
G.
,
1987
,
Combustion, Flame and Explosion of Gases
,
Academic
,
New York.
4.
Blizard
,
N. C.
, and
Keck
,
J. C.
,
1974
, “
Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines
,”
SAE
Technical Paper No. 740191.10.4271/740191
5.
Ferguson
,
C. R.
, and
Keck
,
J. C.
,
1977
, “On
Laminar Flame Quenching and Its Application to Spark Ignition Engines
,”
Combust. Flame
,
28
, pp.
197
205
.10.1016/0010-2180(77)90025-6
6.
DeSoete
,
G. G.
,
1970
, “
The Influence of Isotropic Turbulence on the Critical Ignition Energy
,”
Symp. Combust.
,
13
(
1
), pp.
735
743
.10.1016/S0082-0784(71)80076-0
7.
Egolfopoulos
,
F. N.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
1991
, “
Experimental and Numerical Determination of Laminar Flame Speeds: Mixtures of C2-Hydrocarbons With Oxygen and Nitrogen
,”
Proc. Combust. Inst.
,
23
(1)
, pp.
471
478
.10.1016/S0082-0784(06)80293-6
8.
Jomaas
,
G.
,
Zheng
,
X. L.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2005
, “
Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2–C3 Hydrocarbons at Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
,
30
(1)
, pp.
193
200
.10.1016/j.proci.2004.08.228
9.
Levine
,
O.
, and
Gerstein
,
M.
,
1951
, “
Fundamental Flame Velocities of Pure Hydrocarbons III—Extinction of Tube Method to High Flame Velocities—Acetylene-Air Mixtures
,” NACA RM E51JO5.
10.
Milton
,
B. E.
, and
Keck
,
J. C.
,
1984
, “
Laminar Burning Velocities in Stoichiometric Hydrogen and Hydrogen–Hydrocarbon Gas Mixtures
,”
Combust. Flame
,
58
(
1
), pp.
13
22
.10.1016/0010-2180(84)90074-9
11.
Rallis
,
C. J.
,
Garforth
,
A. M.
, and
Steinz
,
J. A.
,
1965
, “
Laminar Burning Velocity of Acetylene-Air Mixtures by the Constant Volume Method: Dependence on Mixture Composition, Pressure and Temperature
,”
Combust. Flame
,
9
(
4
), pp.
345
356
.10.1016/0010-2180(65)90023-4
12.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.10.1115/1.4007911
13.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.10.1115/1.4026204
14.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1980
, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.10.1016/0010-2180(80)90046-2
15.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.10.1016/0010-2180(82)90127-4
16.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Rahim
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model
,”
Entropy
,
12
(12)
, pp.
2485
2496
.10.3390/e12122485
17.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Al-Mulki
,
J.
, and
Metghalchi
,
H.
,
2011
, “
Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures
,”
Proc. Combust. Inst.
,
33
(1)
, pp.
1021
1027
10.1016/j.proci.2010.05.105
18.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(2)
, p.
022205
.10.1115/1.4006480
19.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
The Effect of Diluent on Flame Structure and Laminar Burning Speeds of JP-8/Oxidizer/Diluent Premixed Flames
,”
Fuel
,
90
(4)
, pp.
1476
1486
.10.1016/j.fuel.2010.11.020
20.
Moghaddas
,
A.
,
Askari
,
O.
,
Rokni
,
E.
, and
Metghalchi
,
H.
,
2013
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Mixtures of H2/CO With Air Over a Wide Range of Mixing Ratios at High Temperatures and Pressures
,” 8th U.S. National Combustion Meeting, Utah, May 19–22.
21.
Moghaddas
,
A.
,
Bennett
,
C.
,
Rokni
,
E.
, and
Metghalchi
,
H.
,
2014
, “
Laminar Burning Speeds and Flame Structures of Mixtures of Difluoromethane (HFC-32) and 1, 1-Difluoroethane (HFC-152a) With Air at Elevated Temperatures and Pressures
,”
HVAC&R Research
,
20
(
1
), pp.
42
50
.10.1080/10789669.2013.822252
22.
Parsinejad
,
F.
,
Arcari
,
C.
, and
Metghalchi
,
H.
,
2006
, “
Flame Structure and Burning Speed of JP-10 air Mixtures
,”
Combust. Sci. Technol.
,
178
(5)
, pp.
975
1000
.10.1080/00102200500270080
23.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures
,”
Fuel
,
89
(5)
, pp.
1041
1049
.10.1016/j.fuel.2009.11.032
24.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane-Air-Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(1)
, pp.
190
196
.10.1115/1.1339984
25.
Rahim
,
F.
,
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2002
, “
Burning Velocity Measurements of Methane–Oxygen–Argon Mixtures and an Application to Extend Methane–Air Burning Velocity Measurements
,”
Int. J. Eng. Res.
,
3
(
2
), pp.
81
92
.10.1243/14680870260127873
26.
Rahim
,
F.
,
Eisazadeh Far
,
K.
,
Parsinejad
,
F.
,
Adrews
,
R. J.
, and
Metghalchi
,
H.
,
2008
, “
A Thermodynamic Model to Calculate Burning Speed of Methane–Air–Diluent Mixtures
,”
Int. J. Thermodyn.
,
11
(
4
), pp.
151
160
.10.5541/ijot.1034000223
27.
Eisazadeh-Far
,
K.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “Thermodynamic Properties of Ionized Gases at High Temperatures,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022201
.10.1115/1.4003881
You do not currently have access to this content.