Near-critical CO2 flow has been studied because of its potential application in carbon dioxide capture and sequestration, which is one of the proposed solutions for reducing greenhouse gas emission. Near the critical point the thermophysical properties of the fluid undergo abrupt changes that affect the flow structure and characteristics. Pressure drop across a stainless steel tube, 2 ft long with 0.084 in. ID, at different inlet conditions and mass flow rates have been measured. The effects of variations of inlet conditions have been studied. The results show extreme sensitivity of pressure drop to inlet conditions especially inlet temperature in the vicinity of the critical point. Also, shadowgraphs have been acquired to study the flow structure qualitatively.

References

References
1.
U.S. Energy Information Administration | Emissions of Greenhouse Gases in the United States 2009
,” Report Number: DOE/IEA-0573(2009),
2011
.
2.
U.S. Energy Information Administration | Annual Energy Outlook 2013 Early Release Overview
,” Report Number: DOE/IEA-0383ER (
2013
).
3.
U.S. Energy Information Administration | Electric Power Annual 2011
,” accessed: Apr. 24,
2014
, available: http://www.eia.gov/electricity/annual/archive/2011/pdf/epa.pdf
4.
Haszeldine
,
R. S.
,
2009
, “
Carbon Capture and Storage: How Green Can Black Be?
,”
Science
,
325
(
5948
), pp.
1647
1652
.10.1126/science.1172246
5.
Ciferno
,
J. P.
,
Fout
,
T. E.
,
Jones
,
A. P.
, and
Murphy
,
J. T.
,
2009
, “
Capturing Carbon From Existing Coal-Fired Power Plants
,”
Chem. Eng. Prog.
,
105
(
4
), pp.
33
–41.
6.
Orr
,
F. M.
, Jr.
,
2009
, “
CO2 Capture and Storage: Are We Ready?
,”
Energy Environ. Sci.
,
2
(
5
), pp.
449
–458.10.1039/b822107n
7.
Seo
,
J. G.
, and
Mamora
,
D. D.
,
2005
, “
Experimental and Simulation Studies of Sequestration of Supercritical Carbon Dioxide in Depleted Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
1
–6.10.1115/1.1790538
8.
Lorentzen
,
G.
, and
Pettersen
,
J.
,
1993
, “
A New, Efficient and Environmentally Benign System for Car Air-Conditioning
,”
Int. J. Refrig.
,
16
(
1
), pp.
4
12
.10.1016/0140-7007(93)90014-Y
9.
Robinson
,
D. M.
, and
Groll
,
E. A.
,
1998
, “
Efficiencies of Transcritical CO2 Cycles With and Without an Expansion Turbine
,”
Int. J. Refrig.
,
21
(
7
), pp.
577
589
.10.1016/S0140-7007(98)00024-3
10.
Lorentzen
,
G.
, “
Revival of Carbon Dioxide as a Refrigerant
,”
Int. J. Refrig.
,
17
(
5
), pp.
292
301
.10.1016/0140-7007(94)90059-0
11.
Liao
,
S. M.
, and
Zhao
,
T. S.
,
2002
, “
Measurements of Heat Transfer Coefficients from Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels
,”
Trans. Soc. Mech. Eng. J. Heat Transf.
,
124
(
3
), pp.
413
420
.10.1115/1.1423906
12.
Bae
,
Y.-Y.
, and
Kim
,
H.-Y.
,
2009
, “
Convective Heat Transfer to CO2 at a Supercritical Pressure Flowing Vertically Upward in Tubes and an Annular Channel
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
329
339
.10.1016/j.expthermflusci.2008.10.002
13.
Bae
,
Y.-Y.
,
Kim
,
H.-Y.
, and
Kang
,
D.-J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
14.
Zhang
,
C.
,
Oostrom
,
M.
,
Grate
,
J. W.
,
Wietsma
,
T. W.
, and
Warner
,
M. G.
,
2011
, “
Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel
,”
Environ. Sci. Technol.
,
45
(
17
), pp.
7581
7588
.10.1021/es201858r
15.
Wang
,
Y.
,
Zhang
,
C.
,
Wei
,
N.
,
Oostrom
,
M.
,
Wietsma
,
T. W.
,
Li
,
X.
, and
Bonneville
,
A.
,
2013
, “
Experimental Study of Crossover From Capillary to Viscous Fingering for Supercritical CO2-Water Displacement in a Homogeneous Pore Network
,”
Environ. Sci. Technol.
,
47
(
1
), pp.
212
218
.10.1021/es3014503
16.
Perrin
,
J.-C.
, and
Benson
,
S.
,
2009
, “
An Experimental Study on the Influence of Sub-Core Scale Heterogeneities on CO2 Distribution in Reservoir Rocks
,”
Transp. Porous Media
,
82
(
1
), pp.
93
109
.10.1007/s11242-009-9426-x
17.
Zuo
,
L.
,
Zhang
,
C.
,
Falta
,
R. W.
, and
Benson
,
S. M.
,
2013
, “
Micromodel Investigations of CO2 Exsolution From Carbonated Water in Sedimentary Rocks
,”
Adv. Water Resour.
,
53
, pp.
188
197
.10.1016/j.advwatres.2012.11.004
18.
Zuo
,
L.
,
Krevor
,
S.
,
Falta
,
R. W.
, and
Benson
,
S. M.
,
2011
, “
An Experimental Study of CO2 Exsolution and Relative Permeability Measurements During CO2 Saturated Water Depressurization
,”
Transp. Porous Media
,
91
(
2
), pp.
459
478
.10.1007/s11242-011-9854-2
19.
Herring
,
A. L.
,
Harper
,
E. J.
,
Andersson
,
L.
,
Sheppard
,
A.
,
Bay
,
B. K.
, and
Wildenschild
,
D.
,
2013
, “
Effect of Fluid Topology on Residual Nonwetting Phase Trapping: Implications for Geologic CO2 Sequestration
,”
Adv. Water Resour.
,
62
, pp.
47
58
.10.1016/j.advwatres.2013.09.015
20.
Wildenschild
,
D.
, and
Sheppard
,
A. P.
,
2013
, “
X-Ray Imaging and Analysis Techniques for Quantifying Pore-Scale Structure and Processes in Subsurface Porous Medium Systems
,”
Adv. Water Resour.
,
51
, pp.
217
246
.10.1016/j.advwatres.2012.07.018
21.
Mohamed
,
I. M.
,
He
,
J.
, and
Nasr-El-Din
,
H. A.
,
2012
, “
Experimental Analysis of CO2 Injection on Permeability of Vuggy Carbonate Aquifers
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013301
.10.1115/1.4007799
22.
Sasaki
,
K.
,
Fujii
,
T.
,
Niibori
,
Y.
,
Ito
,
T.
, and
Hashida
,
T.
,
2008
, “
Numerical Simulation of Supercritical CO2 Injection Into Subsurface Rock Masses
,”
Energy Convers. Manage.
,
49
(
1
), pp.
54
61
.10.1016/j.enconman.2007.05.015
23.
Pruess
,
K.
, and
García
,
J.
,
2002
, “
Multiphase Flow Dynamics During CO2 Disposal Into Saline Aquifers
,”
Environ. Geol.
,
42
(
2–3
), pp.
282
295
.10.1007/s00254-001-0498-3
24.
Pruess
,
K.
, and
Nordbotten
,
J.
,
2011
, “
Numerical Simulation Studies of the Long-Term Evolution of a CO2 Plume in a Saline Aquifer With a Sloping Caprock
,”
Transp. Porous Media
,
90
(
1
), pp.
135
151
.10.1007/s11242-011-9729-6
25.
Law
,
D. H.-S.
, and
Bachu
,
S.
,
1996
, “
Hydrogeological and Numerical Analysis of CO2 Disposal in Deep Aquifers in the Alberta Sedimentary Basin
,”
Energy Convers. Manage.
,
37
(
6–8
), pp.
1167
1174
.10.1016/0196-8904(95)00315-0
26.
Bandara
,
U. C.
,
Tartakovsky
,
A. M.
, and
Palmer
,
B. J.
,
2011
, “
Pore-Scale Study of Capillary Trapping Mechanism During CO2 Injection in Geological Formations
,”
Int. J. Greenhouse Gas Control
,
5
(
6
), pp.
1566
1577
.10.1016/j.ijggc.2011.08.014
27.
Lengler
,
U.
,
De Lucia
,
M.
, and
Kühn
,
M.
,
2010
, “
The Impact of Heterogeneity on the Distribution of CO2: Numerical Simulation of CO2 Storage at Ketzin
,”
Int. J. Greenhouse Gas Control
,
4
(
6
), pp.
1016
1025
.10.1016/j.ijggc.2010.07.004
28.
Uddin
,
M.
,
Coombe
,
D.
, and
Wright
,
F.
,
2008
, “
Modeling of CO2-Hydrate Formation in Geological Reservoirs by Injection of CO2 Gas
,”
ASME J. Energy Resour. Technol.
,
130
(
3
), p.
032502
.10.1115/1.2956979
29.
Uddin
,
M.
,
Coombe
,
D.
,
Law
,
D.
, and
Gunter
,
B.
,
2008
, “
Numerical Studies of Gas Hydrate Formation and Decomposition in a Geological Reservoir
,”
ASME J. Energy Resour. Technol.
,
130
(
3
), p.
032501
.10.1115/1.2956978
30.
Daneshfar
,
J.
,
Hughes
,
R. G.
, and
Civan
,
F.
,
2009
, “
Feasibility Investigation and Modeling Analysis of CO2 Sequestration in Arbuckle Formation Utilizing Salt Water Disposal Wells
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023301
.10.1115/1.3124115
31.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
, McGraw-Hill, New York.
32.
Clifford
,
T.
,
1999
,
Fundamentals of Supercritical Fluids
,
Oxford University
,
New York
.
33.
Kurganov
,
V. A. A.
, and
Kaptil'ny
,
A. G. G.
,
1992
, “
Velocity and Enthalpy Fields and Eddy Diffusivities in a Heated Supercritical Fluid Flow
,”
Exp. Therm. Fluid Sci.
,
5
(
4
), pp.
465
478
.10.1016/0894-1777(92)90033-2
34.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2001
,
Elements of Gas Dynamics
,
Dover Publications
,
Mineola, NY
.
35.
Kazemifar
,
F.
, and
Kyritsis
,
D. C.
,
2014
, “
Experimental Investigation of Near-Critical CO2 Tube-Flow and Joule–Thompson Throttling for Carbon Capture and Sequestration
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
161
170
.10.1016/j.expthermflusci.2013.11.026
36.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. ICE
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
You do not currently have access to this content.