Modeling and simulations of steam methane reforming (SMR) process to produce hydrogen and/or syngas are presented in this article. The reduced computational time with high model validity is the main concern in this study. A volume based reaction model is used, instead of surface based model, with careful estimation of mixture's physical properties. The developed model is validated against the reported experimental data and model accuracy as high as 99.75% is achieved. The model is further used to study the effect of different operating parameters on the steam and methane conversion. General behaviors of the reaction are obtained and discussed. The results showed that increasing the conversion thermodynamic limits with the decrease of the pressure results in a need for long reformers so as to achieve the associated fuel reforming thermodynamics limit. It is also shown that not only increasing the steam to methane molar ratio is favorable for higher methane conversion but the way the ratio is changed also matters to a considerable extent.

References

References
1.
Vellini
,
M.
, and
Tonziello
,
J.
,
2011
, “
Hydrogen Use in an Urban District: Energy and Environmental Comparisons
,”
ASME J. Energy Resour. Technol.
,
132
(
4
),
42601
.10.1115/1.4003032
2.
Dunn
,
S.
,
2002
, “
Hydrogen Futures: Toward a Sustainable Energy System
,”
Int. J. Heat Mass Transfer
,
27
, pp.
235
264
.10.1016/S0360-3199(01)00131-8
3.
Monds
,
J. R.
,
2013
, “
Multicriteria Decision Analysis for Wave Power Technology in Canada
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021201
.10.1115/1.4025408
4.
Platzer
,
M. F.
,
Sarigul-Klijn
,
N.
,
Young
,
J.
,
Ashraf
,
M. A.
, and
Lai
,
J. C. S.
,
2014
, “
Renewable Hydrogen Production Using Sailing Ships
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021203
.10.1115/1.4026200
5.
Kaufui
,
V. W.
,
2014
, “
Engineering Solutions to the Greenhouse Gases Generated by Hydroelectric Plants
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024701
.10.1115/1.4027260
6.
Nowotny
,
J.
,
Sorrell
,
C. C.
,
Sheppard
,
L. R.
, and
Bak
,
T.
, 2005, “
Solar-Hydrogen: Environmentally Safe Fuel for the Future
,”
Int. J. Hydrogen Energy
,
30
(
5
), pp.
521
544
.
7.
Armor
,
J. N.
,
1999
, “
The Multiple Roles for Catalysis in the Production of H2
,”
Appl. Catal. A Gen.
,
176
(
2
), pp.
159
176
.10.1016/S0926-860X(98)00244-0
8.
Ewan
,
B.
, and
Allen
,
R.
,
2005
, “
A Figure of Merit Assessment of the Routes to Hydrogen
,”
Int. J. Hydrogen Energy
,
30
(
8
), pp.
809
819
.10.1016/j.ijhydene.2005.02.003
9.
Crabtree
,
G. W.
,
Dresselhaus
,
M. S.
, and
Buchanan
,
M. V.
, 2004, “
The Hydrogen Economy
,”
Phys. Today
,
57
(
12
), p.
39
.
10.
Hong
,
H.
,
Liu
,
Q.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low Grade Solar Thermal Energy and Methanol Steam Reforming
,”
ASME J. Energy Resour. Technol.
,
13
(
1
), p.
012601
.10.1115/1.3068336
11.
Steinberg
,
M.
, and
Cheng
,
H. C.
, 1989, “
Modern and Prospective Technologies for Hydrogen Production From Fossil Fuels
,”
Int. J. Hydrogen Energy
,
14
(
11
), pp.
797
820
.
12.
Holladay
,
J. D.
,
Hu
,
J.
,
King
,
D. L.
, and
Wang
,
Y.
,
2009
, “
An Overview of Hydrogen Production Technologies
,”
Catal. Today
,
139
(
4
), pp.
244
260
.10.1016/j.cattod.2008.08.039
13.
Rostrup-Nielsen
,
J. R.
,
1993
, “
Production of Synthesis Gas
,”
Catal. Today
,
18
(
4
), pp.
305
324
.10.1016/0920-5861(93)80059-A
14.
Paramaliana
,
A.
,
Frusteri
,
F.
,
Arena
,
F.
,
Mondello
,
N.
, and
Giordano
,
N.
,
1989
, “
Activity and Characterization of Alkali Doped Ni/MgO Catalysts
,”
Struct. React. Surf.
,
48
, pp.
739
748
.10.1016/S0167-2991(08)60735-1
15.
Bernardo
,
C. A.
, and
Trimms
,
D. L.
,
1979
, “
The Kinetics of Gasification of Carbon Deposited on Nickel Catalysts
,”
Carbon
,
17
(
2
), pp.
115
120
.10.1016/0008-6223(79)90017-4
16.
Bernardo
,
C. A.
,
Alstrup
,
I.
, and
Rostrup-Nielsen
,
J. R.
,
1985
, “
Carbon Deposition and Methane Steam Reforming on Silica-Supported Ni-Cu Catalysts
,”
J. Catal.
,
96
(
2
), pp.
517
534
.10.1016/0021-9517(85)90320-3
17.
Chen
,
W. J.
,
Sheu
,
F. R.
, and
Savage
,
R. L.
,
1987
, “
Catalytic Activity of Coal Ash on Steam Methane Reforming and Water-Gas Shift Reactions
,”
Fuel Process. Technol.
,
16
(
3
), pp.
279
288
.10.1016/0378-3820(87)90025-7
18.
Guo
,
X.
,
Sun
,
Y.
,
Yu
,
Y.
,
Zhu
,
X.
, and
Liu
,
C.
,
2012
, “
Carbon Formation and Steam Reforming of Methane on Silica Supported Nickel Catalysts
,”
Catal. Commun.
,
19
, pp.
61
65
.10.1016/j.catcom.2011.12.031
19.
Kuo
,
H. K.
,
Ganesan
,
P.
, and
De Angelis
,
R. J.
,
1980
, “
The Sintering of a Silica-Supported Nickel Catalyst
,”
J. Catal.
,
64
(
2
), pp.
303
319
.10.1016/0021-9517(80)90505-9
20.
Ruojun
,
S.
,
Liangqu
,
Z.
, and
Shendu
,
G. U. O.
,
1991
, “
Coking Resistant Nickel Catalysts for Hydrocarbon Steam Reforming
,”
Catal. Deactiv.
,
68
, pp.
243
247
.10.1016/S0167-2991(08)62639-7
21.
Sehested
,
J.
,
2003
, “
Sintering of Nickel Steam-Reforming Catalysts
,”
J. Catal.
,
217
(
2
), pp.
417
426
.10.1016/S0021-9517(03)00075-7
22.
Sehested
,
J.
,
2004
, “
Sintering of Nickel Steam-Reforming Catalysts: Effects of Temperature and Steam and Hydrogen Pressures
,”
J. Catal.
,
223
(
2
), pp.
432
443
.10.1016/j.jcat.2004.01.026
23.
Sehested
,
J.
,
Carlsson
,
A.
,
Janssens
,
T. V. W.
,
Hansen
,
P. L.
, and
Datye
,
A. K.
,
2001
, “
Sintering of Nickel Steam-Reforming Catalysts on MgAl2O4 Spinel Supports
,”
J. Catal.
,
197
(
1
), pp.
200
209
.10.1006/jcat.2000.3085
24.
Sehested
,
J.
,
2006
, “
Four Challenges for Nickel Steam-Reforming Catalysts
,”
Catal. Today
,
111
(
1–2
), pp.
103
110
.10.1016/j.cattod.2005.10.002
25.
Snoeck
,
J.
, and
Froment
,
G. F.
,
2002
, “
Steam/CO2 Reforming of Methane. Carbon Formation and Gasification on Catalysts With Various Potassium Contents
,”
Ind. Eng. Chem. Res.
,
41
(
15
), pp.
3548
3556
.10.1021/ie010665p
26.
Teixeira
,
A. C. S. C.
, and
Giudici
,
R.
,
1999
, “
Deactivation of Steam Reforming Catalysts by Sintering: Experiments and Simulation
,”
Chem. Eng. Sci.
,
54
(
15–16
), pp.
3609
3618
.10.1016/S0009-2509(98)00516-8
27.
Trimm
,
D. L.
,
1999
, “
Catalysts for the Control of Coking During Steam Reforming
,”
Catal. Today
,
49
(
1–3
), pp.
3
10
.10.1016/S0920-5861(98)00401-5
28.
Trimm
,
D. L.
,
1997
, “
Coke Formation and Minimisation During Steam Reforming Reactions
,”
Catal. Today
,
37
(
3
), pp.
233
238
.10.1016/S0920-5861(97)00014-X
29.
Bshish
,
A.
,
Yaakob
,
Z.
,
Ebshish
,
A.
, and
Alhasan
,
F. H.
,
2013
, “
Hydrogen Production Via Ethanol Steam Reforming Over Ni/Al2O3 Catalysts: Effect of Ni Loading
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012601
.10.1115/1.4024915
30.
Barbieri
,
G.
, and
Di Maio
,
F. P.
,
1997
, “
Simulation of the Methane Steam Re-Forming Process in a Catalytic Pd-Membrane Reactor
,”
Ind. Eng. Chem. Res.
,
5885
(
96
), pp.
2121
2127
.10.1021/ie9601615
31.
Adris
,
A. M.
,
Lim
,
C. J.
, and
Gracc
,
J. R.
,
1997
, “
The Fluidized-Bed Membrane Reactor for Steam Methane Reforming: Model Verification and Parametric Study
,”
Chem. Eng. J.
,
52
(
10
), pp.
1609
1622
.10.1016/S0009-2509(96)00511-8
32.
Barbieri
,
G.
,
Marigliano
,
G.
,
Perri
,
G.
, and
Drioli
,
E.
,
2001
, “
Conversion–Temperature Diagram for a Palladium Membrane Reactor. Analysis of an Endothermic Reaction: Methane Steam Reforming
,”
Ind. Eng. Chem. Res.
,
40
(
9
), pp.
2017
2026
.10.1021/ie0006211
33.
Barbieri
,
G.
,
Violante
,
V.
,
Di Maio
,
F. P.
,
Criscuoli
,
A.
, and
Drioli
,
E.
,
1997
, “
Methane Steam Reforming Analysis in a Palladium-Based Catalytic Membrane Reactor
,”
Ind. Eng. Chem. Res.
,
36
(
8
), pp.
3369
3374
.10.1021/ie970033w
34.
Catalano
,
J.
,
Guazzone
,
F.
,
Mardilovich
,
I. P.
,
Kazantzis
,
N. K.
, and
Ma
,
Y. H.
,
2013
, “
Hydrogen Production in a Large Scale Water Gas Shift Pd-Based Catalytic Membrane Reactor
,”
Ind. Eng. Chem. Res.
,
52
(
3
), pp.
1042
1055
.10.1021/ie2025008
35.
Gallucci
,
F.
,
Comite
,
A.
,
Capannelli
,
G.
, and
Basile
,
A.
,
2006
, “
Steam Reforming of Methane in a Membrane Reactor: An Industrial Case Study
,”
Ind. Eng. Chem. Res.
,
45
(
9
), pp.
2994
3000
.10.1021/ie058063j
36.
Gallucci
,
F.
,
Paturzo
,
L.
,
Fama
,
A.
, and
Basile
,
A.
,
2004
, “
Experimental Study of the Methane Steam Reforming Reaction in a Dense Pd/Ag Membrane Reactor
,”
Ind. Eng. Chem. Res.
,
43
(
4
), pp.
928
933
.10.1021/ie030485a
37.
Galuszka
,
J.
,
Pandey
,
R.
, and
Ahmed
,
S.
,
1998
, “
Methane Conversion to Syngas in a Palladium Membrane Reactor
,”
Catal. Today
,
46
(
2-3
), pp.
83
89
.10.1016/S0920-5861(98)00329-0
38.
Grace
,
J. R.
,
Li
,
X.
, and
Jim Lim
,
C.
,
2001
, “
Equilibrium Modelling of Catalytic Steam Reforming of Methane in Membrane Reactors With Oxygen Addition
,”
Catal. Today
,
64
(
3–4
), pp.
141
149
.10.1016/S0920-5861(00)00519-8
39.
Kikuchi
,
E.
,
2000
, “
Membrane Reactor Application to Hydrogen Production
,”
Catal. Today
,
56
(
1–3
), pp.
97
101
.10.1016/S0920-5861(99)00256-4
40.
Kikuchi
,
E.
,
Nemoto
,
Y.
,
Kajiwara
,
M.
,
Uemiya
,
S.
, and
Kojima
,
T.
,
2000
, “
Steam Reforming of Methane in Membrane Reactors: Comparison of Electroless-Plating and CVD Membranes and Catalyst Packing Modes
,”
Catal. Today
,
56
(
1–3
), pp.
75
81
.10.1016/S0920-5861(99)00264-3
41.
Mahecha-Botero
,
A.
,
Chen
,
Z.
,
Grace
,
J. R.
,
Elnashaie
,
S. S. E. H.
,
Jim Lim
,
C.
,
Rakib
,
M.
,
Yasuda
,
I.
, and
Shirasaki
,
Y.
,
2009
, “
Comparison of Fluidized Bed Flow Regimes for Steam Methane Reforming in Membrane Reactors: A Simulation Study
,”
Chem. Eng. Sci.
,
64
(
16
), pp.
3598
3613
.10.1016/j.ces.2009.04.044
42.
Nam
,
S. W.
,
Yoon
,
S. P.
,
Ha
,
H. Y.
,
Hong
,
S.-A.
, and
Maganyuk
,
A. P.
,
2000
, “
Methane Steam Reforming in a Pd-Ru Membrane Reactor
,”
Korean J. Chem. Eng.
,
17
(
3
), pp.
288
291
.10.1007/BF02699042
43.
Nielsen
,
P. E. H.
, and
Lehrmann
,
P.
,
1995
, “
Steam Reforming of Methane in a Membrane Reactor
,”
Catal. Today
,
25
(
3
), pp.
303
307
.10.1016/0920-5861(95)00074-P
44.
Oklany
,
J. S.
,
Hou
,
K.
, and
Hughes
,
R.
,
1998
, “
A Simulative Comparison of Dense and Microporous Membrane Reactors for the Steam Reforming of Methane
,”
Appl. Catal.
,
170
(
1
), pp.
13
22
.10.1016/S0926-860X(98)00027-1
45.
Patel
,
K.
, and
Sunol
,
A.
,
2007
, “
Modeling and Simulation of Methane Steam Reforming in a Thermally Coupled Membrane Reactor
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
2344
2358
.10.1016/j.ijhydene.2007.03.004
46.
Shu
,
J.
,
Grandjean
,
B. P. A.
, and
Kaliaguine
,
S.
,
1994
, “
Methane Steam Reforming in Asymmetric Pd- and Pd-Ag/Porous SS Membrane Reactors
,”
Science
,
119
(
2
), pp.
305
325
.10.1016/0926-860X(94)85199-9
47.
Tong
,
J.
, and
Matsumura
,
Y.
,
2006
, “
Pure Hydrogen Production by Methane Steam Reforming With Hydrogen-Permeable Membrane Reactor
,”
Catal. Today
,
111
(
3–4
), pp.
147
152
.10.1016/j.cattod.2005.11.001
48.
Tong
,
J.
,
Su
,
L.
,
Kashima
,
Y.
,
Shirai
,
R.
,
Suda
,
H.
, and
Matsumura
,
Y.
,
2006
, “
Simultaneously Depositing Pd−Ag Thin Membrane on Asymmetric Porous Stainless Steel Tube and Application to Produce Hydrogen From Steam Reforming of Methane
,”
Ind. Eng. Chem. Res.
,
45
(
2
), pp.
648
655
.10.1021/ie050935u
49.
Uemiya
,
S.
,
Sato
,
N.
,
Ando
,
H.
, and
Matsuda
,
T.
,
1991
, “
Steam Reforming of Methane in a Hydrogen-Permeable Membrane Reactor
,”
Appl. Catal.
,
67
(
1
), pp.
223
230
.10.1016/S0166-9834(00)84445-0
50.
Adris
,
A. M.
,
Lim
,
C. J.
, and
Grace
,
J. R.
, 1994, “
The Fluidized Bed Membrane Reactor System: A Pilot Scale Experimental Study
,”
Chem. Eng. Sci.
,
49
(
24
), pp.
5833
5843
.
51.
OhI
,
G. L.
,
Stein
,
J. L.
, and
Smith
,
G. E.
,
1996
, “
Fundamental Factors in the Design of a Fast Responding Methanol to Hydrogen Steam Reformer for Transportation Applications
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
112
119
.10.1115/1.2792701
52.
Hou
,
K.
, and
Hughes
,
R.
,
2001
, “
The Kinetics of Methane Steam Reforming Over a Ni/alpha-Al2O Catalyst
,”
Chem. Eng. J.
,
82
(
1–3
), pp.
311
328
.10.1016/S1385-8947(00)00367-3
53.
Munster
,
P.
, and
Grabke
,
H. J.
,
1981
, “
Kinetics of the Steam Reforming of Methane With Iron, Nickel, and Iron-Nickel Alloys as Catalysts
,”
J. Catal.
,
72
(
2
), pp.
279
287
.10.1016/0021-9517(81)90010-5
54.
Nikolla
,
E.
,
Schwank
,
J.
, and
Linic
,
S.
,
2009
, “
Comparative Study of the Kinetics of Methane Steam Reforming on Supported Ni and Sn/Ni Alloy Catalysts: The Impact of the Formation of Ni Alloy on Chemistry
,”
J. Catal.
,
263
(
2
), pp.
220
227
.10.1016/j.jcat.2009.02.006
55.
Agnelli
,
M. E.
,
Ponzi
,
E. N.
, and
Yermian
,
A. A.
,
1987
, “
Catalytic Deactivation on Methane Steam Reforming Catalysis. 2. Kinetics Study
,”
Ind. Eng. Chem. Res.
,
26
(
8
), pp.
1707
1713
.10.1021/ie00068a038
56.
Ko
,
K.-D.
,
Lee
,
J. K.
,
Park
,
D.
, and
Shin
,
S. H.
,
1995
, “
Kinetics of Steam Reforming Over a Ni/Alumina Catalyst
,”
Korean J. Chem. Eng.
,
12
(
4
), pp.
478
480
.10.1007/BF02705814
57.
Allen
,
D. W.
,
Gerhard
,
E. R.
, and
Likins
,
M. R.
,
1975
, “
Kinetics of the Methane-Steam Reaction
,”
Ind. Eng. Chem. Process. Des. Dev.
,
14
(
3
), pp.
256
259
.10.1021/i260055a010
58.
Ross
,
J. R. H.
, and
Steel
,
M. C. F.
,
1973
, “
Mechanism of the Steam Reforming of Methane Over a Coprecipitated Nickel-Alumina Catalyst
,”
J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases
,
69
, p.
10
.
59.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water–Gas Shift: I. Intrinsic Kinetics
,”
AIChE J.
,
35
(
1
), pp.
88
96
.10.1002/aic.690350109
60.
Adris
,
A. M.
,
Elnashie
,
S. S. E. H.
,
AL-Ubaid
,
A. S.
, and
Soliman
,
M. A.
,
1990
, “
On the Non-Monotonic Behavior of Methane-Steam Reforming Kinetics
,”
Chem. Eng. Sci.
,
45
(
2
), pp.
491
501
.10.1016/0009-2509(90)87036-R
61.
Avetisov
,
A. K.
,
Rostrup-Nielsen
,
J. R.
,
Kuchaev
,
V. L.
,
Bak Hansen
,
J.-H.
,
Zyskin
,
A. G.
, and
Shapatina
,
E. N.
,
2010
, “
Steady-State Kinetics and Mechanism of Methane Reforming With Steam and Carbon Dioxide Over Ni Catalyst
,”
J. Mol. Catal. A: Chem.
,
315
(
2
), pp.
155
162
.10.1016/j.molcata.2009.06.013
62.
Wei
,
J.
, and
Iglesia
,
E.
,
2009
, “
Steam Methane Reforming in a Ni/Al2O3 Catalyst: Kinetics and Diffusional Limitations in Extrudates
,”
Can. J. Chem. Eng.
,
87
(
6
), pp.
945
956
.10.1139/V09-146
63.
Hoang
,
D. L.
,
Chan
,
S. H.
, and
Ding
,
O. L.
,
2005
, “
Kinetic and Modelling Study of Methane Steam Reforming Over Sulfide Nickel Catalyst on a Gamma Alumina Support
,”
Chem. Eng. J.
,
112
(
1–3
), pp.
1
11
.10.1016/j.cej.2005.06.004
64.
Soliman
,
M. A.
,
Adris
,
A. M.
,
Al-Ubaid
,
A. S.
, and
El-Nashaie
,
S. S. E. H.
,
2007
, “
Intrinsic Kinetics of Nickel/Calcium Aluminate Catalyst for Methane Steam Reforming
,”
J. Chem. Technol. Biotechnol.
,
55
(
2
), pp.
131
138
.10.1002/jctb.280550206
65.
Seo
,
Y.-S.
,
Seo
,
D.-J.
,
Seo
,
Y.-T.
, and
Yoon
,
W.-L.
,
2006
, “
Investigation of the Characteristics of a Compact Steam Reformer Integrated With a Water-Gas Shift Reactor
,”
J. Power Sources
,
161
(
2
), pp.
1208
1216
.10.1016/j.jpowsour.2006.05.039
66.
Soliman
,
M. A.
,
El-Nashaie
,
S. S. E. H.
,
Al-Ubaid
,
A.
, and
Adris
,
A.
,
1801
, “
Simulation of Steam Reformer for Methane
,”
Chem. Eng. J.
,
13
(
8
), pp.
1801
1806
.10.1016/0009-2509(88)87044-1
67.
Pin
,
J.
,
Schbib
,
S.
, and
Borio
,
D. O.
,
2001
, “
Influence of the Heat Flux Profiles on the Operation of Primary Steam Reformers
,”
Ind. Eng. Chem. Res.
,
40
(
2
), pp.
5215
5221
.10.1021/ie001065d
68.
Irani
,
M.
,
Alizadehdakhel
,
A.
,
Pour
,
A. N.
,
Hoseini
,
N.
, and
Adinehnia
,
M.
,
2011
, “
CFD Modeling of Hydrogen Production Using Steam Reforming of Methane in Monolith Reactors: Surface or Volume-Base Reaction Model?
,”
Int. J. Hydrogen Energy
,
36
(
24
), pp.
15602
15610
.10.1016/j.ijhydene.2011.09.030
69.
Schwaab
,
M.
,
Alberton
,
L.
,
Fontes
,
C. E.
,
Bittencourt
,
R. C.
,
Pinto
,
C.
, and
Mu
,
L.
,
2009
, “
Hybrid Modeling of Methane Reformers. 2. Modeling of the Industrial Reactors
,”
Ind. Eng. Chem. Res.
,
48
(
21
), pp.
9376
9382
.10.1021/ie801831m
70.
De Wilde
,
J.
, and
Froment
,
G. F.
,
2012
, “
Computational Fluid Dynamics in Chemical Reactor Analysis and Design: Application to the ZoneFlow TM Reactor for Methane Steam Reforming
,”
Fuel
,
100
, pp.
48
56
.10.1016/j.fuel.2011.08.068
71.
Zanfir
,
M.
, and
Gavriilidis
,
A.
,
2003
, “
Catalytic Combustion Assisted Methane Steam Reforming in a Catalytic Plate Reactor
,”
Chem. Eng. Sci.
,
58
(
17
), pp.
3947
3960
.10.1016/S0009-2509(03)00279-3
72.
Zhai
,
X.
,
Ding
,
S.
,
Cheng
,
Y.
,
Jin
,
Y.
, and
Cheng
,
Y.
,
2010
, “
CFD Simulation With Detailed Chemistry of Steam Reforming of Methane for Hydrogen Production in an Integrated Micro-Reactor
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5383
5392
.10.1016/j.ijhydene.2010.03.034
73.
Pantoleontos
,
G.
,
Kikkinides
,
E. S.
, and
Georgiadis
,
M. C.
,
2012
, “
A Heterogeneous Dynamic Model for the Simulation and Optimisation of the Steam Methane Reforming Reactor
,”
Int. J. Hydrogen Energy
,
2
, pp.
1
13
.10.1016/j.ijhydene.2012.02.125
74.
Froment
,
G. F.
, and
Xu
,
J.
,
1989
, “
Methane Steam Reforming: II. Diffusional Limitations and Reactor Simulation
,”
AIChE J.
,
35
(
1
), pp.
97
103
.10.1002/aic.690350110
75.
Pedernera
,
M. N.
,
Piña
,
J.
,
Borio
,
D. O.
, and
Bucalá
,
V.
,
2003
, “
Use of a Heterogeneous Two-Dimensional Model to Improve the Primary Steam Reformer Performance
,”
Chem. Eng. J.
,
94
(
1
), pp.
29
40
.10.1016/S1385-8947(03)00004-4
76.
Froment
,
G. F.
,
2000
, “
Production of Synthesis Gas by Steam- and CO2-Reforming of Natural Gas
,”
J. Mol. Catal. A Chem.
,
163
(
1–2
), pp.
147
156
.
77.
Nandasana
,
A. D.
,
Ray
,
A. K.
, and
Gupta
,
S. K.
,
2003
, “
Dynamic Model of an Industrial Steam Reformer and Its Use for Multiobjective Optimization
,”
Ind. Eng. Chem. Res.
,
42
(
17
), pp.
4028
4042
.10.1021/ie0209576
78.
Vakhshouri
,
K.
, and
Hashemi
,
M. M. Y. M.
,
2008
, “
Simulation Study of Radial Heat and Mass Transfer Inside a Fixed Bed Catalytic Reactor
,”
Int. J. Chem. Biol. Eng.
,
23
(
1
), pp.
1
8
.
79.
Shayegan
,
J.
,
Hashemi
,
M. M. Y. M.
, and
Vakhshouri
,
K.
,
2008
, “
Operation of an Industrial Steam Reformer Under Severe Condition: A Simulation Study
,”
Can. J. Chem. Eng.
,
86
(
4
), pp.
747
755
.10.1002/cjce.20082
80.
Alberton
,
L.
,
Schwaab
,
M.
,
Fontes
,
C. E.
,
Bittencourt
,
R. C.
, and
Pinto C.
Jose
,
2009
, “
Hybrid Modeling of Methane Reformers. 1. A Metamodel for the Effectiveness Factor of a Catalyst Pellet With Complex Geometry
,”
Ind. Eng. Chem. Res.
,
48
(
21
), pp.
9369
9375
.10.1021/ie801830q
81.
Singh
,
C. P. P.
, and
Saraf
,
D. N.
,
1979
, “
Simulation of Side Fired Steam-Hydrocarbon Reformers
,”
Ind. Eng. Chem. Process. Des. Dev.
,
18
(
1
), pp.
1
7
.10.1021/i260069a001
82.
Wilke
,
C. R.
, and
Chang
,
P.
,
1955
, “
Correlation of Diffusion Coefficients in Dilute Solutions
,”
AIChE J.
,
1
(
2
), pp.
264
270
.10.1002/aic.690010222
83.
Janbozorgi
,
M.
,
Sheikhi
,
M. R. H.
, and
Metghalchi
,
H.
,
2013
, “
Principle of Detailed Balance and Second Law of Thermodynamics
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041901
.10.1115/1.4024221
84.
Bond
,
G. C.
,
Webb
,
G.
, and
Ross
,
J. R. H.
,
1982
, “
Metal Catalysed Methanation and Steam Reforming
,”
Catal. R. Soc. Chem. Spec. Period. Rep.
,
7
, pp.
1
45
.
85.
Erugn
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
You do not currently have access to this content.