Pore-scale coupled flow of gas and condensate is believed to be the main mechanism for condensate production in low interfacial tension (IFT) gas condensate reservoirs. While coupling enhances condensate flow due to transport of condensate lenses by the gas, it dramatically reduces gas permeability by introducing capillary resistance against gas flow. In this study, a dynamic wetting approach is used to investigate the effect of viscous resistance, IFT and disjoining pressure on pore-scale coupling of gas and condensate. Disjoining pressure arises from van der Waals interactions between gas and solid through thin liquid films, e.g., condensate films on pore walls. Low values of IFT and small pore diameters, as involved in many gas condensate reservoirs, give rise to importance of disjoining pressure. Calculations show that disjoining pressure postpones gas condensate coupling to higher condensate flow fractions-from about 0.08 for vanishing disjoining effect to more than 0.16 for strong disjoining effect. Results also suggest that strong disjoining effect will result in higher gas relative permeability after coupling. Finally, the positive rate effect on gas permeability is only observed when disjoining effects are weak.

References

References
1.
Danesh
,
A.
,
Khazam
,
M.
,
Henderson
,
G. D.
,
Tehrani
,
D. H.
, and
Peden
,
J. M.
,
1994
, “
As Condensate Recovery Studies
,”
Proceedings of DTI Improved Oil Recovery and Research Dissemination Seminar
,
London
.
2.
Henderson
,
G. D.
,
Danesh
,
A.
,
Tehrani
,
D. H.
, and
Peden
,
J. M.
,
1995
, “
The Effect of Velocity and Interfacial Tension on the Relative Permeability of Gas Condensate Fluids in the Wellbore Region
,”
8th IOR Symposium
,
Vienna
, Austria, May 15– 17. 1995, pp.
201
208
.
3.
Henderson
,
G. D.
,
Danesh
,
A.
,
Tehrani
,
D. H.
, and
Peden
,
J. M.
,
1996
, “
Measurement and Correlation of Gas Condensate Relative Permeability by the Steady-State Method
,”
SPE J.
,
1
(2), pp.
191
201
.10.2118/31065-PA
4.
Jamiolahmady
,
M.
,
Danesh
,
A.
,
Tehrani
,
D. H.
, and
Duncan
,
D. B.
,
2000
, “
A Mechanistic Model of Gas-Condensate Flow in Pores
,”
Transp. Porous Media
,
41
(1), pp.
17
46
.10.1023/A:1006645515791
5.
Bretherton
,
F. P.
,
1961
, “
The Motion of Long Bubbles in Tubes
,”
J. Fluid Mech.
,
10
(
2
), pp.
166
188
.10.1017/S0022112061000160
6.
Shahidi
,
F.
,
1997
, “Modelling of Gas-Condensate Flow in Reservoir at Near Well Bore Condition,” Ph.D. thesis, Heriot–Watt University, Edinburgh, Scotland.
7.
Blom
,
S. M. P.
, and
Hagoort
,
J.
,
1998
, “How to Include the Capillary Number in Gas Condensate Relative Permeability Functions?,” SPE 49268, Ann. Tech. Conf., LA.
8.
Jamiolahmady
,
M.
,
Sohrabi
,
M.
, and
Ireland
,
S.
,
2009
, “
Gas Condensate Relative Permeability of Low Permeability Rocks: Coupling Versus Inertia
,”
SPE120088, Middle East oil and Gas Conference
,
Bahrain
.
9.
Jamiolahmady
,
M.
,
Sohrabi
,
M.
,
Ireland
,
S.
, and
Ghahri
,
P.
,
2009
, “
A Generalized Correlation for Predicting Gas–Condensate Relative Permeability at Near Wellbore Conditions
,”
J. Pet. Sci. Eng.
,
66
(3–4), pp.
98
110
.10.1016/j.petrol.2009.02.001
10.
Gauglitz
,
P. A.
, and
Radke
,
C. J.
,
1990
, “
Dynamics of Liquid Film Break-Up in Constricted Capillaries
,”
J. Colloid Interface Sci.
,
134
(1), pp.
14
40
.10.1016/0021-9797(90)90248-M
11.
Li
,
K.
, and
Firoozabadi
,
A.
,
2000
, “
Phenomenological Modeling of Critical Condensate Saturation and Relative Permeabilities in Gas/Condensate Systems
,”
SPE J.
,
5
(
2
), pp.
138
147
.10.2118/56014-PA
12.
Teletzke
,
G. F.
,
1983
, “
Thin Liquid Films: Molecular Theory and Hydrodynamic Implications
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
13.
Deryagin
,
B. V.
, and
Kussakov
,
M.
,
1939
, “
Anomalous Properties of Thin Polymolecular Films
,”
Acta Physicochem. URSS
,
10
, pp.
25
44
.
14.
Mohammadi-Khanaposhtani, M., Bahramian, A., Pourafshary, P., Aminshahidy, B., and Fazelabdolabadi, B., 2012, “Effect of Disjoining Pressure on the Onset of Condensate Blockage in Gas Condensate Reservoirs,”
J. Nat. Gas Sci. Eng.
,
9
, pp. 160–165.
15.
Ratulowski
,
J.
, and
Chang
,
H. C.
,
1989
, “
Transport of Gas Bubbles in Capillaries
,”
Phys. Fluids A
,
1
(
10
), pp.
1642
1655
.10.1063/1.857530
16.
Hammond
,
P. S.
,
1983
, “
Nonlinear Adjustment of a Thin Annular Film of Viscous Fluid Surrounding a Thread of Another Within a Circular Cylindrical Pipe
,”
J. Fluid Mech.
,
137
, pp.
363
384
.10.1017/S0022112083002451
17.
Griffith
,
P.
, and
Lee
,
K. S.
,
1964
, “
The Stability of an Annulus of Liquid in a Tube
,”
ASME, J. Fluids Eng.
,
86
(4), pp.
666
668
.10.1115/1.3655917
18.
Gumerman
,
R. J.
, and
Homsy
,
G. M.
,
1975
, “
The Stability of Radially Bounded Thin Films
,”
Chem. Eng. Commun.
,
2
(1), pp.
27
36
.10.1080/00986447508960444
19.
Aul
,
R. W.
, and
Olbright
,
W. L.
,
1990
, “
Stability of a Thin Annular Film in Pressure-Driven, Low-Reynolds-Number Flow Through a Capillary
,”
J. Fluid Mech.
,
215
, pp.
585
599
.10.1017/S0022112090002774
20.
Kawahara
,
A.
,
Chung
,
P. M.-Y.
, and
Kawaji
,
M.
,
2002
, “
Investigation of Two-Phase Flow Pattern, Void Fraction and Pressure Drop in a Microchannel
,”
Int. J. Multiphase Flow
,
28
(9), pp.
1411
1435
.10.1016/S0301-9322(02)00037-X
21.
Lifshitz
,
E. M.
,
1956
, “
The Theory of Molecular Attractive Force Between Solids
,”
Sov. Phys. JETP
,
2
, pp.
73
83
.
22.
Shi
,
C.
, and
Horne
,
R. N.
,
2008
, “
Improved Recovery in Gas Condensate Reservoirs Considering Compositional Variations
,”
SPE 115786 Technical Conference and Exhibition Held in Denver, CO
.
You do not currently have access to this content.