The creation of large complex fracture networks by hydraulic fracturing is imperative for enhanced oil recovery from tight sand or shale reservoirs, tight gas extraction, and hot-dry-rock (HDR) geothermal systems to improve the contact area to the rock matrix. Although conventional fracturing treatments may result in biwing fractures, there is evidence by microseismic mapping that fracture networks can develop in many unconventional reservoirs, especially when natural fracture systems are present and the differences between the principle stresses are low. However, not much insight is gained about fracture development as well as fluid and proppant transport in naturally fractured tight formations. In order to clarify the relationship between rock and treatment parameters, and resulting fracture properties, numerical simulations were performed using a commercial discrete fracture network (DFN) simulator. A comprehensive sensitivity analysis is presented to identify typical fracture network patterns resulting from massive water fracturing treatments in different geological conditions. It is shown how the treatment parameters influence the fracture development and what type of fracture patterns may result from different treatment designs. The focus of this study is on complex fracture network development in different natural fracture systems. Additionally, the applicability of the DFN simulator for modeling shale gas stimulation and HDR stimulation is critically discussed. The approach stated above gives an insight into the relationships between rock properties (specifically matrix properties and characteristics of natural fracture systems) and the properties of developed fracture networks. Various simulated scenarios show typical conditions under which different complex fracture patterns can develop and prescribe efficient treatment designs to generate these fracture systems. Hydraulic stimulation is essential for the production of oil, gas, or heat from ultratight formations like shales and basement rocks (mainly granite). If natural fracture systems are present, the fracturing process becomes more complex to simulate. Our simulations suggest that stress state, in situ fracture networks, and fluid type are the main parameters influencing hydraulic fracture network development. Major factors leading to more complex fracture networks are an extensive pre-existing natural fracture network, small fracture spacings, low differences between the principle stresses, well contained formations, high tensile strength, high Young’s modulus, low viscosity fracturing fluid, and large fluid volumes. The differences between 5 km deep granitic HDR and 2.5 km deep shale gas stimulations are the following: (1) the reservoir temperature in granites is higher, (2) the pressures and stresses in granites are higher, (3) surface treatment pressures in granites are higher, (4) the fluid leak-off in granites is less, and (5) the mechanical parameters tensile strength and Young’s modulus of granites are usually higher than those of shales.

References

References
1.
Economides
,
M. J.
, and
Wood
,
D. A.
,
2009
, “
The State of Natural Gas
,”
J. Nat. Gas Sci. Eng.
,
1
(
1–2
), pp.
1
13
.10.1016/j.jngse.2009.03.005
2.
Goldstein
,
B. A.
,
Hiriart
,
G.
,
Tester
,
J.
,
Bertani
,
B.
,
Bromley
,
R.
,
Gutierrez-Negrin
,
L.
,
Huenges
,
E.
,
Ragnarsson
,
H.
,
Mongillo
,
A.
,
Muraoka
,
M. A.
, and
Zui
,
V. I.
,
2011
, “
Great Expectations for Geothermal Energy to 2100
,”
Proceedings
,
Thirty-Sixth Workshop on Geothermal Reservoir Engineering
, Stanford University, Stanford, CA, Jan. 31–Feb. 2, Paper No. SGP-TR-191.
3.
Vidhi
,
R.
,
Kuravi
,
S.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(
4
),
p
. 042002. 10.1115/1.4023513
4.
Economides
,
M. J.
, and
Martin
,
T.
,
2007
,
Modern Fracturing, Enhancing Natural Gas Production
,
1st ed.
,
Energy Tribune Publishing Inc.
,
Houston, TX
, p.
531
.
5.
Tester
,
J.
,
2006
,
The Future of Geothermal Energy, Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century
,
Massachusetts Institute of Technology
,
Cambridge, MA
, p.
372
.
6.
Perkins
,
T.
, and
Kern
,
L.
,
1961
, “
Widths of Hydraulic Fractures
,”
J. Pet. Technol.
,
13
(9), pp.
937
949
.
7.
Nodgren
,
R.
,
1972
, “
Propagation of Vertical Hydraulic Fracture
,”
Soc. Petrol. Eng. J.
,
12
(4), pp.
306
314
.10.2118/3009-PA
8.
Khristianovich
,
S. A.
, and
Zheltov
,
Y. P.
,
1955
, “
Formation of Vertical Fractures by Means of Highly Viscous Fluids
,”
Proceedings, Fourth World Petroleum Congress
,
Rome, Italy
, June 6–15, pp.
579
586
.
9.
Geertsma
,
J.
, and
de Klerk
,
F.
,
1969
, “
A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures
,”
J. Pet. Technol.
,
21
(12), pp.
1571
1581
.10.2118/2458-PA
10.
Cleary
,
M. P.
,
1980
, “
Analysis of Mechanisms and Procedures for Producing Favourable Shapes of Hydraulic Fractures
,”
SPE Paper No. 9260
. 10.2118/9260-MS
11.
Cipolla
,
C. L.
,
Warpinski
,
N. R.
, and
Mayerhofer
,
M. J.
,
2008
, “
Hydraulic Fracture Complexity: Diagnosis, Remediation, and Exploitation
,”
SPE Paper No. 115771
. 10.2118/115771-MS
12.
Tiab
,
D.
,
Lu
,
J.
,
Nguyen
,
H.
, and
Owayed
,
J.
,
2010
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
132
(
1
),
p
. 012901. 10.1115/1.4000700
13.
Wu
,
J.
,
Liu
,
Y.
, and
Yang
,
H.
,
2012
, “
New Method of Productivity Equation for Multipbranch Horizontal Well in Three-Dimensional Anisotropic Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032801
.10.1115/1.4006573
14.
Osholake
,
T.
, Jr.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.10.1115/1.4007766
15.
Cipolla
,
C. L.
,
Warpinski
,
N. R.
,
Mayerhofer
,
M. J.
,
Lolon
,
E. P.
, and
Vincent
,
M. C.
,
2008
, “
The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture Treatment Design
,”
SPE Paper No. 115769
. 10.2118/115769-MS
16.
Meyer
,
B. R.
, and
Bazan
,
L. W.
,
2011
, “
A Discrete Fracture Network Model for Hydraulically Induced Fractures: Theory, Parametric and Case Studies
,”
SPE Paper No. 140514
. 10.2118/140514-MS
17.
Meyer & Associates
,
2011
, “
User’s Guide Meyer Fracturing Simulators
,”
9th ed.
,
Meyer & Associates
,
Natrona Heights, PA
.
18.
Warren
,
J. E.
, and
Root
,
J. E.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE
,
3
(
3
), pp.
245
255
.10.2118/426-PA
19.
Valley
,
B.
, and
Evans
,
K. F.
,
2006
, “
Strength and Elastic Properties of the Soultz Granite
,”
EHDRA Scientific Conference
, Soultz-sous-Forêts, France, June 15–16, pp.
1
6
.
20.
Gale
,
J. F. W.
,
Reed
,
R. M.
, and
Holder
,
J.
,
2007
, “
Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracturing Treatments
,”
Am. Assoc. Pet. Geol. Bull.
,
91
(
4
), pp.
603
622
.10.1306/11010606061
21.
Sondergeld
,
C. H.
,
Newsham
,
K. E.
,
Comisky
,
J. T.
,
Rice
,
M. C.
, and
Rai
,
C. S.
,
2010
, “
Petrophysical Considerations in Evaluating and Producing Shale Gas Resources
,”
SPE Paper No. 131768
. 10.2118/131768-MS
22.
Eseme
,
E.
,
Urai
,
J. L.
,
Krooss
,
B. M.
, and
Littke
,
R.
,
2007
, “
Review of Mechanical Properties of Oil Shales: Implications for Exploitation and Basin Modelling
,”
Oil Shale
,
24
(
2
), pp.
159
174
.
23.
Jacot
,
R. H.
,
Bazan
,
L. W.
, and
Meyer
,
B. R.
,
2010
, “
Technology Integration: A Methodology to Enhance Production and Maximize Economics in Horizontal Marcellus Shale Wells
,”
SPE Paper No. 135262
.10.2118/135262-MS
24.
Kumar
,
J.
,
1976
, “
The Effect of Poisson’s Ratio on Rock Properties
,”
SPE Annual Fall Technical Conference and Exhibition
,
New Orleans, LA
, Oct. 3–6, p. 6, SPE 6094.
25.
Selvadurai
,
A. P. S.
,
Boulon
,
M. J.
, and
Nguyen
,
T. S.
,
2005
, “
The Permeability of an Intact Granite
,”
Pure Appl. Geophys.
,
162
(
2
), pp.
373
407
.10.1007/s00024-004-2606-2
26.
Hill
,
R. E.
,
1992
, “
Analysis of Natural and Induced Fractures in the Barnett Shale
,” RI Report No. 92/0094.
27.
Agapito
,
J.
, and
Hardy
,
M.
,
1982
, “
Induced Horizontal Stress Method of Pillar Design in Oil Shale
,”
Proceedings of 15th Oil Shale Symposium
,
Colorado School of Mines, Golden, CO
, Apr. 28–30, pp.
191
197
.
28.
Sun
,
Z.
, and
Ouchterlony
,
F.
,
1986
, “
Fracture Toughness of Stripa Granite Cores
,”
Int. J. Rock Mech. Min. Sci. Geomech.
,
23
(
6
), pp.
399
409
.10.1016/0148-9062(86)92305-3
29.
Dai
,
F.
, and
Xia
,
K.
,
2009
, “
Tensile Strength Anisotropy of Barre Granite
,”
Proceedings of the 3rd CANUS Rock Mechanics Symposium
,
Toronto, ON, Canada
, May 9–15, paper 4012, p. 15.
30.
Alehossein
,
H.
, and
Boland
,
J. N.
,
2004
, “
Strength, Toughness, Damage and Fatigue of Rock
,”
Structural Integrity and Fracture
, http://espace.library.uq.edu.au/eserv/UQ:10122/Alehossein_sif04.pdf
31.
Beard
,
T.
,
2011
, “
Fracture Design in Horizontal Shale Wells—Data Gathering to Implementation
,”
EPA Hydraulic Fracturing Workshop
, Arlington, VA, Mar. 10–11, p.
8
.
32.
Geraud
,
Y.
,
Rosener
,
M.
,
Surma
,
F.
,
Place
,
J.
,
Le Garzic
,
E.
, and
Diraison
,
M.
,
2010
, “
Physical Properties of Fault Zones Within a Granite Body: Example of the Soultz-sous-Forêts Geothermal Site
,”
Geoscience
,
342
(
7–8
), pp.
566
574
.10.1016/j.crte.2010.02.002
33.
Petrov
,
V. A.
,
Poluektov
,
V. V.
,
Zharikov
,
A. V.
,
Nasimov
,
R. M.
,
Diaur
,
N. I.
,
Terentiev
,
V. A.
,
Burmistrov
,
A. A.
,
Petrunin
,
G. I.
,
Popov
,
V. G.
,
Sibgatulin
,
V. G.
,
Lind
,
E. N.
,
Grafchikov
,
A. A.
, and
Shmonov
,
V. M.
,
2005
, “
Microstructure, Filtration, Elastic and Thermal Properties of Granite Rock Samples: Implication for HLW Disposal
,”
Petrophysical Properties of Crystalline Rocks
,
P. K.
Harvey
,
T. S.
Brewer
,
P. A.
Pezard
, and
V. A.
Petrov
, eds.,
Geolog. Soc. London UK
, Special Publications, 240, pp.
237
253
.
34.
Sone
,
H.
,
2012
, “
Mechanical Properties of Shale Gas Reservoir Rocks and Its Relation to the In-Situ Stress Variation Observed in Shale Gas Reservoirs
,” Ph.D. thesis, Stanford University, Stanford, CA.
35.
Ning
,
X.
,
Fan
,
J.
,
Holditch
,
S. A.
, and
Lee
,
W. J.
,
1993
, “
Property Measurement in Naturally Fractured Devonian Shale Cores Using a New Pressure Pulse Method
,” SCA Conference Paper No. 9301.
36.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23
,”
NIST Reference Fluid Thermodynamic and Transport Properties—REFPROP, version 9.0, Standard Reference Data Program
,
National Institute of Standards and Technology
, Gaithersburg, MD, p.
55
.
37.
Zoback
,
M. D.
,
2008
,
Reservoir Geomechanics
,
Cambridge University
,
Cambridge, MA
.10.1017/CBO9780511586477
38.
Kalinina
,
E.
,
McKenna
,
S. A.
,
Hadgu
,
T.
, and
Lowry
,
T.
,
2012
, “
Analysis of the Effects of Heterogeneity on Heat Extraction in an EGS Represented With the Continuum Fracture Model
,”
Proceedings of 37th Workshop on Geothermal Reservoir Engineering
,
Stanford University
,
Stanford, CA
, Jan. 30–Feb. 1.
39.
Gale
,
J. F. W.
, and
Holder
,
J.
,
2012
, “
Natural Fractures in Some US Shales and Their Importance for Gas Production
,”
Pet. Geol. Conf
. Ser. 2010
,
7
, pp.
1131
1140
.10.1144/0071131
40.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2013
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME
Paper No. OMAE2013-11084. 10.1115/OMAE2013-11084
41.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J.-C.
,
2004
, “
Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
190
200
.10.1115/1.1791651
42.
Fisher
,
K.
, and
Warpinski
,
N.
,
2012
, “
Hydraulic-Fracture-Height Growth: Real Data
,”
SPE Paper No. 145949
. 10.2118/145949-PA
You do not currently have access to this content.