In this paper, results of a numerical study on pore continuity, permeability and durability of cementitious slurries for carbon sequestration projects are presented. The hydration model Hymostruc is used to simulate and visualize 3D virtual microstructures which are used to demonstrate the contribution of capillary pores to the continuity of the capillary pore system embedded in an evolving cementitious microstructure. Once capillary pores are blocked due to ongoing hydration, transport of CO2 species through the microstructure is avoided which may protect the slurry from leakage. Evaluating the pore continuity of the capillary pore system during hydration of the microstructure is therefore indispensable for a robust cementitious sealing material and is the main objective for slurry design. Simulations are conducted on slurries exposed to ambient temperatures of 20 °C, 40 °C, and 60 °C, and a durability outlook regarding the CO2 ingress is given as well. Aggregates and associated interfacial transition zones (ITZs) are introduced in the slurry system that may cause alternative porous path ways through the system. Pore continuity analysis shows the relevance of numerical simulations for assessing the capillary pore structure inside an evolving microstructure in relation to its sealing and durability performance.

References

References
1.
Moll
,
S.
,
Bringezu
,
S.
, and
Schütz
,
H.
,
2005
, “
Resource Use in European Countries—Material Flows and Resource Management
,” Wuppertal Institute for Climate, Environment and Energy, Wuppertal (DE).
2.
Moya
,
J. A.
,
Pardo
,
N.
, and
Mercier
,
A.
,
2010
, “
Energy Efficiency and CO2 Emissions: Prospective Scenarios for the Cement Industry
,” JRC Scientific and Technical Report No. EUR 24592 EN.
3.
United Nations Environment Programme, 2007, “Buildings and Climate Change: Status, Challenges and Opportunities,” United Nations Environment Programme, Nairobi, Kenya. Available at: http://www.unep.org/sbci/pdfs/BuildingsandClimateChange.pdf
4.
Rehan
,
R.
, and
Nehdi
,
M.
,
2005
, “
Carbon Dioxide Emissions and Climate Change: Policy Implications for the Cement Industry
,”
Environ. Sci. Policy
,
8
(
2
), pp.
105
114
.10.1016/j.envsci.2004.12.006
5.
Zhang
,
M.
, and
Bachu
,
S.
,
2011
, “
Review of Integrity of Existing Wells in Relation to CO2 Geological Storage: What do We Know?
,”
Int. J. Greenhouse Gas Control
,
5
(
4
), pp.
826
840
.10.1016/j.ijggc.2010.11.006
6.
Cary
,
J. W.
,
Svec
,
R.
,
Grigg
,
R.
,
Zhang
,
J.
, and
Crow
,
W.
,
2010
, “
Experimental Investigation of Wellbore Integrity and CO2-Brine Flow Along the Casing-Cement Microannulus
,”
Int. J. Greenhouse Gas Control
,
4
(
2
), pp.
272
282
.10.1016/j.ijggc.2009.09.018
7.
Bachu
,
S.
,
2002
, “
Sequestration of CO2 in Geological Media in Response to Climate Change: Road Map for Site Selection Using the Transform of the Geological Space Into the CO2 Phase Space
,”
Energy Convers. Manage.
,
43
(
1
), pp.
87
102
.10.1016/S0196-8904(01)00009-7
8.
Dijkstra
,
J. W.
, and
Jansen
,
D.
,
2004
, “
Novel Concepts for CO2 Capture
,”
Energy
,
29
(
9–10
), pp.
1249
1257
.10.1016/j.energy.2004.03.084
9.
Gale
,
J.
,
2004
, “
Geological Storage of CO2: What do We Know, Where are the Gaps and What More Needs to be Done?
,”
Energy
,
29
(
9–10
), pp.
1329
1338
.10.1016/j.energy.2004.03.068
10.
Duguid
,
A.
, and
Tombari
,
J.
,
2007
, “
Technologies for Measuring Well Integrity in a CO2 Field
,”
Sixth Annual Conference on Carbon Capture and Sequestration—DOE/NETL
, May 7–10, p.
13
.
11.
Chiaramonte
,
L.
,
Zoback
,
M. D.
,
Friedmann
,
J.
, and
Stamp
,
V.
,
2008
, “
Seal Integrity and Feasibility of CO2 Sequestration in the Teapot Dome EOR Pilot: Geomechanical Site Characterization
,”
Environ. Geol.
,
54
(
8
), pp.
1667
1675
.10.1007/s00254-007-0948-7
12.
Fabbri
,
A.
,
Jacquemet
,
N.
, and
Seyedi
,
D. M.
,
2012
, “
A Chemo-Poromechanical Model of Oilwell Cement Carbonation Under CO2 Geological Storage Conditions
,”
Cem. Concr. Res.
,
42
(
1
), pp.
8
19
.10.1016/j.cemconres.2011.07.002
13.
Kumar
,
A.
,
Nwachukwu
,
J.
, and
Samuel
,
R.
,
2013
, “
Analytical Model to Estimate the Downhole Casing Wear Using the Total Wellbore Energy
,”
ASME J. Energy Res. Technol.
,
135
(
4
), p.
042901
.10.1115/1.4023550
14.
Zhou
,
D.
, and
Wojtanowicz
,
A. K.
,
2011
, “
Annular Pressure Reduction During Primary Cementing
,”
ASME J. Energy Res. Technol.
,
133
(
3
), p.
031003
.10.1115/1.4004809
15.
Lesti
,
M.
,
Tiemeyer
,
C.
, and
Plank
,
J.
,
2013
, “
CO2 Stability of Portland Cement Based Well Cementing Systems for Use on Carbon Capture & Storage (CCS) Wells
,”
Cem. Concr. Res.
,
45
(
1
), pp.
45
54
.10.1016/j.cemconres.2012.12.001
16.
Thiery
,
M.
,
Villain
,
G.
,
Dangla
,
P.
, and
Platret
,
G.
,
2007
, “
Investigation of the Carbonation Front Shape on Cementitious Materials: Effects of the Chemical Kinetics
,”
Cem. Concr. Res.
,
37
(
7
), pp.
1047
1058
.10.1016/j.cemconres.2007.04.002
17.
Steffens
,
A.
,
Dinkler
,
D.
, and
Ahrens
,
H.
,
2002
, “
Modeling Carbonation for Corrosion Risk Prediction of Concrete Structures
,”
Cem. Concr. Res.
,
32
(
6
), pp.
935
941
.10.1016/S0008-8846(02)00728-7
18.
Saetta
,
A. V.
,
Schrefler
,
B. A.
, and
Vitaliani
,
R.
,
1993
, “
The Carbonation of Concrete and the Mechanism of Moisture, Heat and Carbon Dioxide Flow Through Porous Materials
,”
Cem. Concr. Res.
,
23
(
4
), pp.
761
772
.10.1016/0008-8846(93)90030-D
19.
Bary
,
B.
, and
Sellier
,
A.
,
2004
, “
Coupled Moisture-Carbon Dioxide-Calcium Transfer Model for Carbonation of Concrete
,”
Cem. Concr. Res.
,
34
(
10
) pp.
1859
1872
.10.1016/j.cemconres.2004.01.025
20.
Ukrainczyk
,
N.
, and
Koenders
,
E. A. B.
,
2014
, “
Representative Elementary Volumes for 3D Modeling of Mass Transport in Cementitious Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
22
(
3
), p.
035001
.10.1088/0965-0393/22/3/035001
21.
Ishida
,
T.
,
Maekawa
,
K.
, and
Soltani
,
M.
,
2004
, “
Theoretically Indentified Strong Coupling of Carbonation Rate and Thermodynamic Moisture States in Micropores of Concrete
,”
J. Adv. Concr. Technol.
,
2
(
2
), pp.
213
222
.10.3151/jact.2.213
22.
Zhang
,
J.
,
Weissinger
,
E. A.
,
Peethamparan
,
S.
, and
Scherer
,
G. W.
,
2010
, “
Early Hydration and Setting of Oil Well Cement
,”
Cem. Concr. Res.
,
40
(
7
), pp.
1023
1033
.10.1016/j.cemconres.2010.03.014
23.
Kutchko
,
B. G.
,
Strazisar
,
B. R.
,
Dzombak
,
D. A.
,
Lowry
,
G. V.
, and
Thaulow
,
N.
,
2007
, “
Degradation of Well Cement by CO2 Under Geologic Sequestration Conditions
,”
Environ. Sci. Technol.
,
41
(
13
), pp.
4787
4792
.10.1021/es062828c
24.
van Breugel
,
K.
,
1991
, “
Simulation of Volume Changes in Hardening Cement-Based Materials
,” Ph.D. thesis, Technische Universiteit Delft, Delft The Netherlands.
25.
Koenders
,
E. A. B.
,
2006
, “
Stereology-Based Modelling of Blended Cement Microstructures
,” Technische Universiteit Delft, The Netherlands, Internal Report No. 25.5-06-09.
26.
Ukrainczyk
,
N.
,
Koenders
,
E. A. B.
,
van Breugel
,
K.
,
2012
, “
Multicomponent Modeling of Portland Cement Hydration Reactions
,”
RILEM Proceedings pro083: Microstructural-Related Durability of Cementitious Composites, 2nd International Conference on Microstructural-Related Durability of Cementitious Composites
, Amsterdam, The Netherlands, Apr. 11–13,
G.
Ye
,
K.
van Breugel
,
W.
Sun
, and
C.
Miao
, eds.,
RILEM Publications SARL
,
Bagneux
, pp.
228
235
.
27.
Koenders
,
E. A. B.
,
1997
, “
Simulation of Volume Changes in Hardening Cement-Based Materials
,” Ph.D. thesis, Technische Universiteit Delft, Delft The Netherlands.
28.
Ye
,
G.
,
2003
, “
Experimental Study and Numerical Simulation of the Development of the Micro-Structure and Permeability of Cementitious Materials
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
29.
Bentz
,
D. P.
, and
Garboczi
,
E. J.
,
1991
, “
Percolation of Phases in a Three-Dimensional Cement Paste Microstructural Model
,”
Cem. Concr. Res.
,
21
(
2–3
), pp.
325
344
.10.1016/0008-8846(91)90014-9
30.
Navi
,
P.
, and
Pignat
,
C.
,
1996
, “
Simulation of Cement Hydration and the Connectivity of the Capillary Pore Space
,”
Adv. Cem. Based Mater.
,
4
(
2
), pp.
58
67
.10.1016/S1065-7355(96)90052-8
31.
Garboczi
,
E. J.
, and
Bentz
,
D. P.
,
1999
, “
Percolation Aspects of Cement Paste and Concrete—Properties and Durability
,” High-Performance Concrete: Research to Practice, Proceedings American Concrete Institute Spring Convention, Chicago, IL, Mar. 14–19, American Concrete Institute, Special Publication 189, pp.
147
164
.
32.
Santa
,
G.
,
Bentz
,
D. P.
, and
Weiss
,
J.
,
2011
, “
Capillary Porosity Depercolation in Cement-Based Materials: Measurement Techniques and Factors Which Influence Their Interpretation
,”
Cem. Concr. Res.
,
41
(
8
), pp.
854
864
.10.1016/j.cemconres.2011.04.006
33.
Garboczi
,
E. J.
, and
Bentz
,
D. P.
,
1996
, “
Modelling of the Microstructure and Transport Properties of Concrete
,”
Constr. Build. Mater.
,
10
(
5
), pp.
293
300
.10.1016/0950-0618(94)00019-0
34.
Hu
,
J.
, and
Stroeven
,
P.
,
2005
, “
Depercolation Threshold of Porosity in Model Cement: Approach by Morphological Evolution During Hydration
,”
Cem. Concr. Res.
,
27
(
1
), pp.
19
25
.10.1016/j.cemconcomp.2004.02.039
35.
Treuenfels, A., 1994, “An Efficient Flood Visit Algorithm,” C/C++ Users J.,
12
(8), pp. 39–62.
36.
Chang
,
C.-F.
, and
Chen
,
J.-W.
,
2006
, “
The Experimental Investigation of Concrete Carbonation Depth
,”
Cem. Concr. Res.
,
36
(
9
), pp.
1760
1767
.10.1016/j.cemconres.2004.07.025
37.
Justnes
,
H.
,
Skalle
,
P.
,
Sveen
,
J.
, and
Øye
,
B. A.
,
1995
, “
Porosity of Oil Well Cement Slurries During Setting
,”
Adv. Cem. Res.
,
7
(
25
), pp.
9
12
.10.1680/adcr.1995.7.25.9
38.
Appleby
,
S.
, and
Wilson
,
A.
,
1996
, “
Permeability and Suction in Setting Cement
,”
Chem. Eng. Sci.
,
51
(
2
), pp.
251
267
.10.1016/0009-2509(95)00260-X
39.
Ridha
,
S.
,
Irawan
,
S.
, and
Ariwahjoedi
,
B.
,
2014
, “
Prediction Equation for Permeability of Class G Oilwell Cement Under Reservoir Conditions
,”
Arab. J. Sci. Eng.
,
39
(
6
), pp.
5219
5228
.10.1007/s13369-014-1028-4
40.
Yao
,
J.
,
Wang
,
C.
,
Yang
,
Y.
, and
Yan
,
X.
,
2012
, “
A Stochastic Upscaling Analysis for Carbonate Media
,”
ASME J. Energy Res. Technol.
,
135
(
2
), p.
022901
.10.1115/1.4023005
41.
Huet
,
B.
,
Tasoti
,
V.
, and
Khalfallah
,
I.
,
2011
, “
A Review of Portland Cement Carbonation Mechanisms in CO2 Rich Environment
,”
Energy Proc.
,
4
, pp.
5275
5282
.10.1016/j.egypro.2011.02.507
42.
Ershadi
,
V.
,
Ebadi
,
E.
,
Rabani
,
A. R.
,
Ershadi
,
L.
, and
Soltanian
,
H.
,
2011
, “
Reduction of Set Cement Permeability in Oil Well to Decrease the Pollution of Receptive Environment Using Spherical Nanosilica
,”
2nd International Conference on Environmental Science and Technology
, Feb. 26–28, Vol.
6
, Singapore, pp. V1101–V1104.
43.
Gao
,
Y.
,
De Schutter
,
G.
,
Ye
,
G.
,
Huang
,
H.
,
Tan
,
Z.
, and
Wu
,
K.
,
2013
, “
Porosity Characterization of ITZ in Cementitious Composites: Concentric Expansion and Overflow Criterion
,”
Constr. Build. Mater.
,
38
, pp.
1051
1057
. Available at: http://www.sciencedirect.com/science/journal/09500618/38/supp/C10.1016/j.conbuildmat.2012.09.047
44.
Garboczi
,
E. J.
, and
Bentz
,
D. P.
,
1997
, “
Analytical Formulas for Interfacial Transition Zone Properties
,”
Adv. Cem. Based Mater.
,
6
(
3–4
), pp.
99
108
.10.1016/S1065-7355(97)90016-X
You do not currently have access to this content.