Numerous multizone multistage hydraulic fracturing treatments are now being executed in low permeability oil and gas fields around the world. Due to the limited access to the subsurface, post-treatment assessments are mainly limited to few techniques such as tiltmeter, microseismic, and tracer-logs. The first two techniques are mainly used to determine fracture extension; however, fracture height and fracture initiation at all perforation clusters could only be confirmed through radioactive tracer logs or detailed pressure analysis. In this paper, we consider real examples from a field from Central America and investigate potential problems that led to the limited generation of fractures in multizone treatments. For instance, some of the postfrac radioactive logs show very low concentration of tracers at some perforated zones in comparison with other zones. On the other hand in some cases, tracer logs indicate the presence of tracers in deeper or shallower zones. Different reasons could cause fracture growth in nonperforated zones, including but not limited to: perforation design problems, casing/cement integrity problems, lack of containment, instability of fracture growth in one or some of the zones, and finally making a mistake in selecting lithology for fracturing. In this paper, some of these issues have been examined for a few sample wells using treatment pressure data, petrophysical logs, and postfrac tracer logs. Some recommendations in designing the length and arrangement of perforations to avoid these problems in future fracturing jobs are provided at the end of this paper.

References

References
1.
Warpinski
,
N. R.
,
Lorenz
,
J. C.
,
Branagan
,
P. T.
,
Myal
,
F. R.
, and
Gall
,
B. L.
,
1993
, “
Examination of a Cored Hydraulic Fracture in a Deep Gas Well
,”
SPE Prod. Facil.
,
8
, pp.
150
158
.
2.
Dahi Taleghani
,
A.
, and
Olson
,
J.
,
2009
, “
Analysis of Multi-Stranded Hydraulic Fracture Propagation: An Improved Model for the Interaction Between Induced and Natural Fractures
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, Louisiana
, Oct. 4–7, Paper No. ATCE SPE 124884.
3.
Dahi Taleghani
,
A.
, and
Olson
,
J.
,
2013
, “
How Natural Fractures Could Affect Hydraulic Fracture Geometry
,”
SPE J.
,
19
, pp.
161
171
.
4.
Olson
,
J.
, and
Taleghani
,
A. D.
,
2009
, “
Modelling Simultaneous Growth of Multiple Hydraulic Fractures and Their Interaction With Natural Fractures
,” Hydraulic Fracturing Technology Conference, Paper No. SPE 119739.
5.
Cipolla
,
C. L.
,
Warpinski
,
N. R.
,
Mayerhofer
,
M. J.
,
Lolon
,
E. P.
, and
Vincent
,
M. C.
,
2010
, “
The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture-Treatment Design
,”
SPE Prod. Oper.
,
25
(
4
), pp.
438
452
.
6.
Gadekea
,
L. L.
, and
Smith
,
H. D.
,
1987
, “
Trancerscan: A Spectroscopy Technique for Determining the Distribution Of Multiple Radioactive Tracers In Downhole Operations
,”
Log Anal.
,
28
(
1
), pp.
27
39
.
7.
Miller
,
W. K.
,
Peterson
,
R. E.
,
Stevens
,
J. E.
,
Lackey
,
C. B.
, and
Harrison
,
C. W.
,
1994
, “
In-Situ Stress Profiling and Prediction of Hydraulic Fracture Azimuth for the West Texas Canyon Sands Formation
,”
SPE Prod. Facil.
,
9
(
3
), pp.
204
210
.
8.
Mulkern
,
M.
,
Masnyk
,
B.
,
Kramer
,
H.
, and
Sites
,
J.
,
2012
, “
A Green Alternative for Determination of Frac Height and Proppant Distribution
,”
SPE Eastern Regional Meeting
, Morgantown, WV, Oct. 13–15, Paper No. SPE 138500.
9.
Ahmed
,
U.
,
Thompson
,
T. W.
, and
Kelkar
,
S. M.
,
1984
, “
Perforation Placement Optimization: A Modified Hydraulic Fracturing Technique
,”
Paper Presented at SPE/DOE/GRI Unconventional Gas Recovery Symposium
,
Pittsburgh, PA
, May 13–15, SPE/DOE/GRI Paper No. 12841.
10.
Crump
,
J.
, and
Conway
,
M.
,
1988
, “
Effects of Perforation-Entry Friction on Bottomhole Treating Analysis
,”
J. Pet. Technol.
,
40
(
8
), pp.
1041
1048
.
11.
Abbas
,
S.
,
Lecampion
,
B.
, and
Prioul
,
R.
,
2013
, “
Competition Between Transverse and Axial Hydraulic Fractures In Horizontal Wells
,”
Proceedings of 2013 SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
, Feb. 04–06.
12.
Dahi Taleghani
,
A.
,
2011
, “Modeling Simultaneous Growth of Multi-Branch Hydraulic Fractures.” 45th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, June 26–29, Paper No. ARMA-11-436.
13.
Sumi
,
Y.
,
Nemat-Nasser
,
S.
, and
Keer
,
L. M.
,
1980
, “
A New Combined Analytical and Finite-Element Solution Method for Stability Analysis of the Growth of Interacting Tension Cracks in Brittle Solids
,”
Int. J. Eng. Sci.
,
18
(
1
), pp.
211
224
.10.1016/0020-7225(80)90021-X
14.
Bazant
,
Z.
, and
Cedolin
,
L.
,
1991
, “
Stability of Structures
,”
The Oxford Engineering Science Series
,
Oxford University Press
,
New York
.
15.
American Petroleum Institute (API), 2009, API/HF1, Hydraulic Fracturing Operations—Well Construction and Integrity Guidelines, 1st ed., Washington, D.C.
16.
Sarris
,
E.
, and
Papanastasiou
,
P.
,
2011
, “
The Influence of the Cohesive Process Zone in Hydraulic Fracturing Modeling
,”
Int. J. Fract.
,
167
(
1
), pp.
33
45
.10.1007/s10704-010-9515-4
17.
Wang, W.
, and
Dahi Taleghani, A.
,
2014
, “
Cement Sheath Integrity During Hydraulic Fracturing: An Integrated Modeling Approach
,” SPE Hydraulic Fracturing Technology Conference The Woodlands, TX, Feb. 4–6 February, Paper No. SPE-168642-MS.
18.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
104
.10.1016/0022-5096(60)90013-2
19.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
ASME J. Appl. Mech.
,
7
, pp.
55
129
.
20.
Tvergaard
, V
.
, and
Hutchinson
,
J. W.
,
1996
, “
Effect of Strain-Dependent Cohesive Zone Model on Predictions of Crack Growth Resistance
,”
Int. J. Solids Struct.
,
33
, pp.
3297
3308
.10.1016/0020-7683(95)00261-8
21.
Xie
,
M.
,
1995
, “
Finite Element Modeling of Discrete Crack Propagation
,” Ph.D. thesis, University of New Mexico, Albuquerque, NM.
22.
Camanho
,
P. P.
, and
Dávila
,
C. G.
,
2002
, “
Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials
,” NASA-Technical Paper No. 211737.
23.
Cui
,
W.
,
Wisnom
,
M. R.
, and
Jones
,
M.
,
1992
, “
A Comparison of Failure Criteria to Predict Delamination of Unidirectional Glass/Epoxy Specimens Waisted Through the Thickness
,”
Composites
,
23
(
3
), pp.
158
166
.10.1016/0010-4361(92)90436-X
24.
Dávila
,
C. G.
, and
Johnson
,
E. R.
,
1993
, “
Analysis of Delamination Initiation in Postbuckled Dropped-Ply Laminates
,”
AIAA J.
,
31
(
4
), pp.
721
727
.10.2514/3.49019
25.
Camanho
,
P. P.
, and
Matthews
,
F. L.
,
1999
, “
Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates
,”
J. Compos. Mater.
,
33
, pp.
906
927
.10.1177/002199839903301002
26.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
, pp.
439
449
.10.1016/0266-3538(96)00005-X
27.
Reeder
,
J. R.
, and
Crews
,
J. H.
,
1988
, “
Mixed-Mode Bending Method for Delamination Testing
,”
AIAA J.
,
28
(
7
), pp.
1270
1276
.10.2514/3.25204
28.
Griffith
,
A. A.
,
1924
, “
The Theory of Rupture
,”
Proceedings of First International Congress Applied Mechanics
, Delft.
29.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
J. Appl. Mech.
,
31
, pp.
379
386
.10.1115/1.3601206
30.
Mavko
,
G.
,
Mukerji
,
T.
, and
Dvorkin
,
J.
,
2009
,
The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media
,
Cambridge University Press
, New York.
31.
Detournay
,
E.
, and
Cheng
,
A. H. D.
,
1991
, “
Plane Strain Analysis of a Stationary Hydraulic Fracture in a Poroelastic Medium
,”
Int. J. Solids Struct.
,
37
(
13
), pp.
1645
1662
.10.1016/0020-7683(91)90067-P
32.
Bourgoyne
,
A. T.
,
Chenevert
,
M. E.
,
Millheim
,
K. K.
, and
Young
,
F. S.
, 1986, Applied Drilling Engineering, Society of Petroleum Engineering Vol. 2, pp. 312–324.
33.
Halliburton, 2001, “Halliburton Cementing Tables,” The Red Book, Halliburton Co., Duncan, OK.
34.
Chen
,
Z.
,
Bunger
,
A. P.
,
Zhang
,
X.
, and
Jeffrey
,
R. G.
,
2009
, “
Cohesive Zone Finite Element-Based Modeling of Hydraulic Fractures
,”
Acta Mechanica Solida Sinica
,
22
(
5
), pp.
443
452
You do not currently have access to this content.