Shale caprock integrity is critical in ensuring that subsurface injection and storage of anthropogenic carbon dioxide (CO2) is permanent. The interaction of clay-rich rock with aqueous CO2 under dynamic conditions requires characterization at the nanoscale level due to the low-reactivity of clay minerals. Geochemical mineral–fluid interaction can impact properties of shale rocks primarily through changes in pore geometry/connectivity. The experimental work reported in this paper applied specific analytical techniques in investigating changes in surface/near-surface properties of crushed shale rocks after exposure (by flooding) to CO2–brine for a time frame ranging between 30 days and 92 days at elevated pressure and fractional flow rate. The intrinsically low permeability in shale may be altered by changes in surface properties as the effective permeability of any porous medium is largely a function of its global pore geometry. Diffusive transport of CO2 as well as carbon accounting could be significantly affected over the long term. The estimation of permeability ratio indicated that petrophysical properties of shale caprock can be doubled.

References

References
1.
National Energy Technology Laboratory
,
Department of Energy
,
2010
,
Carbon Sequestration Atlas of the United States and Canada
, Vol.
3
, pp.
1
162
.
2.
Chadwick
,
R. A.
,
Zweigel
,
P.
, and
Gregersen
,
U.
,
2003
, “
Geological Characterization of CO2 Storage Sites: Lessons From Sleipner, Northern North Sea
,”
6th International Conference on Greenhouse Gas Control Technologies
,
Pergamon, Oxford
, pp.
321
326
.
3.
Busch
,
A.
,
Amann-Hildenbrand
,
A.
,
Bertier
,
P.
,
Waschbuesch
,
M.
, and
Krooss
,
B. M.
,
2010
, “
The Significance of Caprock Sealing Integrity for CO2 Storage
,”
SPE International Conference on CO2 Capture, Storage, and Utilization
,
New Orleans, LA
.
4.
Bennion
,
D. B.
, and
Bachu
,
S.
,
2007
, “
Permeability and Relative Permeability Measurements at Reservoir Conditions for CO2-Water Systems in Ultra Low Permeability Confining Caprocks
,”
EUROPEC/EAGE Conference and Exhibition
,
London, UK
.
5.
Heath
,
J. E.
,
Dewers
,
T. A.
,
McPherson
,
B. J.
,
Nemer
,
M. B.
, and
Kotula
,
P. G.
,
2012
, “
Pore-Lining Phases and Capillary Breakthrough Pressure of Mudstone Caprocks: Sealing Efficiency of Geologic CO2 Storage Sites
,”
Int. J. Greenhouse Gas Control
,
11
(
1
), pp.
204
220
.10.1016/j.ijggc.2012.08.001
6.
Allen
,
P. A.
, and
Allen
,
J. R.
,
2005
,
Basin Analysis–Principles and Applications
,
2nd ed.
,
John Wiley & Sons
, New Jersey, pp.
1
500
.
7.
Armitage
,
P. J.
,
Worden
,
R. H.
,
Faulkner
,
D. R.
,
Aplin
,
A. C.
,
Butcher
,
A. R.
, and
LLiffe
,
J.
,
2010
, “
Diagenetic and Sedimentary Controls on Porosity in Lower Carboniferous Fine-grained Lithologies, Krechba Field, Algeria: A Petrological Study of a Caprock to a Carbon Capture Site
,”
Mar. Pet. Geol.
,
27
(
7
), pp.
1395
1410
.10.1016/j.marpetgeo.2010.03.018
8.
White
,
M. D.
,
McGrail
,
B. P.
,
Schaef
,
H. T.
,
Hu
,
J. Z.
,
Hoyt
,
D. W.
, and
Felmy
,
A. R.
,
2011
, “
Multiphase Sequestration Geochemistry: Model for Mineral Carbonation
,”
Energy Procedia
,
4
(
1
), pp.
5009
5016
.10.1016/j.egypro.2011.02.472
9.
Kohler
,
E.
,
Parra
,
T.
, and
Vidal
,
O.
,
2009
, “
Clayey Cap-Rock Behavior in H2O-CO2 Media at Low Pressure and Temperature Conditions: An Experimental Approach
,”
Clays Clay Miner.
,
57
(
5
), pp.
616
637
.10.1346/CCMN.2009.0570509
10.
Liu
,
F.
,
Lu
,
P.
,
Griffith
,
C.
,
Hedges
,
S. W.
,
Soong
,
Y.
,
Hellevang
,
H.
, and
Zhu
,
C.
,
2012
, “
CO2–Brine–Caprock Interaction: Reactivity Experiments on Eau Claire Shale and a Review of Relevant Literature
,”
Int. J. Greenhouse Gas Control
,
7
(
1
), pp.
153
167
.10.1016/j.ijggc.2012.01.012
11.
Mohamed
, I
. M.
,
He
,
J.
, and
Nasr-El-Din
,
H. A.
,
2012
, “
Experimental Analysis of CO2 Injection on Permeability of Vuggy Carbonate Aquifers
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013301
.10.1115/1.4007799
12.
Seo
,
J. G.
, and
Mamora
,
D. D.
,
2005
, “
Experimental and Simulation Studies of Sequestration of Supercritical Carbon Dioxide in Depleted Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
1
6
.10.1115/1.1790538
13.
Gaus
,
I.
,
2010
, “
Role and Impact of CO2-Rock Interactions During CO2 Storage in Sedimentary Rocks
,”
Int. J. Greenhouse Gas Control
,
4
(
1
), pp.
73
89
.10.1016/j.ijggc.2009.09.015
14.
Wollenweber
,
J.
,
Alles
,
S.
,
Busch
,
A.
,
Krooss
,
B. M.
,
Stanjek
,
H.
, and
Littke
,
R.
,
2010
, “
Experimental Investigation of the CO2 Sealing Efficiency of Caprocks
,”
Int. J. Greenhouse Gas Control
,
4
(
2
), pp.
231
241
.10.1016/j.ijggc.2010.01.003
15.
Hellevang
,
H.
,
Van
,
T. H.
, and
Aagaard
,
P. P.
,
2013
, “
Kinetic Modelling of CO2-Water-Rock Interactions
,”
Int. J. Greenhouse Gas Control
,
15
(
1
), pp.
3
15
.10.1016/j.ijggc.2013.01.027
16.
Busch
,
A.
,
Alles
,
S.
,
Gensterblum
,
Y.
,
Prinz
,
D.
,
Dewhurst
,
D. N.
, and
Raven
,
M. D.
,
2008
, “
Carbon Dioxide Storage Potential of Shales
,”
Int. J. Greenhouse Gas Control
,
2
(
3
), pp.
297
308
.10.1016/j.ijggc.2008.03.003
17.
Credoz
,
A.
,
Bildstein
,
O.
,
Jullien
,
M.
,
Raynal
,
J.
,
Trotignon
,
L.
, and
Pokrovsky
,
O.
,
2011
, “
Mixed-Layer Illite-Smectite Reactivity in Acidified Solutions: Implications for Clayey Caprock Stability in CO2 Geological Storage
,”
Appl. Clay Sci.
,
53
(
1
), pp.
402
408
.10.1016/j.clay.2011.01.020
18.
Rosenbauer
,
R. J.
,
Koksalan
,
T.
, and
Palandri
,
J. L.
,
2005
, “
Experimental Investigation of CO2–Brine-Rock Interactions at Elevated Temperature and Pressure: Implications for CO2 Sequestration in Deep-Saline Aquifers
,”
Fuel Process. Technol.
,
86
(
14–15
), pp.
1581
1597
.10.1016/j.fuproc.2005.01.011
19.
David
,
C.
, and
Le Ravalec-Dupin
,
M.
,
2007
,
Rock Physics and Geomechanics in the Study of Reservoirs and Repositories
,
Geological Society, Special Publications
,
London, UK
.
20.
Smith
,
J.
,
Durucan
,
S.
,
Korre
,
A.
, and
Shi
,
J.
,
2011
, “
Carbon Dioxide Storage Risk Assessment: Analysis of Caprock Fracture Network Connectivity
,”
Int. J. Greenhouse Gas Control
,
5
(
1
), pp.
226
240
.10.1016/j.ijggc.2010.10.002
21.
Wertz
,
F.
,
Gherardi
,
F.
,
Blanc
,
P.
,
Bader
,
A.-G.
, and
Fabbri
,
A.
,
2013
, “
Cement CO2-Alteration Propagation at the Well–Caprock–Reservoir Interface and Influence of Diffusion
,”
Int. J. Greenhouse Gas Control
,
12
(
1
), pp.
9
17
.10.1016/j.ijggc.2012.10.019
22.
Ellis
,
B. R.
,
Bromhal
,
G. S.
,
Mclntyre
,
D. L.
, and
Peters
,
C. A.
,
2011
, “
Changes in Caprock Integrity due to Vertical Migration of CO2-Enriched Brine
,”
Energy Procedia
,
4
(
1
), pp.
5327
5334
.10.1016/j.egypro.2011.02.514
23.
Olabode
,
A.
, and
Radonjic
,
M.
,
2013
, “
Experimental Investigations of Caprock Integrity in CO2 Sequestration
,”
Energy Procedia
,
37
(
1
), pp.
5014
5025
.10.1016/j.egypro.2013.06.415
24.
Wigand
,
M.
,
Kaszuba
,
J. P.
,
Carey
,
J. W.
, and
Hollis
,
W. K.
,
2009
, “
Geochemical Effects of CO2 Sequestration on Fractured Wellbore Cement at the Cement/Caprock Interface
,”
Chem. Geol.
,
265
(
1–2
), pp.
122
133
.10.1016/j.chemgeo.2009.04.008
25.
Gherardi
,
F.
,
Xu
,
T.
, and
Pruess
,
K.
,
2007
, “
Numerical Modeling of Self-Limiting and Self-Enhancing Caprock Alteration Induced by CO2 Storage in a Depleted Gas Reservoir
,”
Chem. Geol.
,
244
(
1–2
), pp.
103
129
.10.1016/j.chemgeo.2007.06.009
26.
Xu
,
T.
,
Apps
,
J. A.
, and
Pruess
,
K.
,
2005
, “
Mineral Sequestration of Carbon Dioxide in a Sandstone-Shale System
,”
Chem. Geol.
,
217
(
3–4
), pp.
295
318
.10.1016/j.chemgeo.2004.12.015
27.
Walsh
,
S. D. C.
,
Du Frane
,
W. L.
,
Mason
,
H. E.
, and
Caroll
,
S. A.
,
2013
, “
Permeability of Wellbore-Cement Fractures Following Degradation by Carbonated Brine
,”
Rock Mech. Rock Eng.
,
46
(
3
), pp.
455
464
.10.1007/s00603-012-0336-9
You do not currently have access to this content.