The chronic water problems in parts of India are probably due mainly to mismanagement. The rolling blackout and brownout problems in the larger Indian cities are due to lack of generation capacity. Since about ninety percent of the world's electricity is generated based on the steam Rankine cycle, environmental water is necessary for cooling, and freshwater is used as the working fluid. Furthermore, electricity is tied to water as part of the bigger water energy nexus phenomena occurring worldwide. China has started and continued with many initiatives to correct problems with water management. Projects do exist where the climatically dry north is being fed water from the wet south. China has water energy nexus conditions occurring too. The review of the scientific literature on studies about the sources of the Ganges, the Yangtze, the Yellow river, the Indus and the Mekong (the drinking water source of about forty percent of the World's population), the glaciers that feed these sources and how they are shrinking with global warming, has yielded a simple policy decision. Mass balance considerations provide the answer that the logical solution of the recent accelerated water changing from solid to liquid on mountain tops, requires dams and storage areas (lakes) to prevent all that freshwater from escaping to the lowlands, and ultimately being discharged into the oceans. One of the other major contributions in this work is to suggest conversion of (old) Rankine cycle generation of electricity to (new) combined gas cycle generation and/or simple gas cycle generation. The combined gas cycle generation can achieve efficiencies of 55–60%, while that of the Rankine cycle power generation languishes around 30%. Less water is required per MW electric power generated for condenser cooling in the combined cycle. The simple gas cycle generation can achieve 40% thermal efficiency on the average and use no water for cooling. There is also the suggestion to upgrade to supercritical power plants due to the advances in power plant technologies. The improved thermal efficiencies gained from this upgrade generate other benefits as well. Another contribution is the suggestion to use seawater for closed system condenser cooling in power plants that are not near the sea or ocean or any large body of freshwater. The open system seawater condenser cooling has been practiced for years throughout the world. This will definitely reduce the demand for freshwater, which could otherwise be used for human consumption or agriculture. Additionally, the rising seas problem locally may be reduced somewhat if enough of the seawater is used.

References

References
1.
National Geographic
,
2010
, “
The Water Issue
,” National Geographic,
217
(
4
).
2.
Yao
,
T.
,
Thompson
,
L. G.
,
Mosbrugger
,
V.
,
Zhang
,
F.
,
Ma
,
Y.
,
Luo
,
T.
,
Xu
,
B.
,
Yang
,
X.
,
Joswiak
,
D. R.
,
Wang
,
W.
,
Joswiak
,
M. E.
,
Devkota
,
L. P.
,
Tayal
,
S.
,
Jilani.
R.
, and
Fayziev
,
R.
,
2012
, “
Third Pole Environment (TPE)
,”
Environ. Dev.
,
3
, pp.
52
64
.10.1016/j.envdev.2012.04.002
3.
Yao
,
T.
,
Liu
,
Y.
,
Zhao
,
H.
, and
Yu
,
W.
, “
Tibetan Plateau
,”
2011
,
Encyclopedia of Earth Sciences Series 2011
,
Springer
,
New York
.
4.
Ye
,
Q. H.
,
Zhu
,
L. P.
,
Zheng
,
H. P.
,
Naruse
,
R. J.
,
Zhang
,
X. Q.
, and
Kang
,
S. C.
,
2007
, “
Glacier and Lake Variations in the Yamzhog Yumco Basin, Southern Tibetan Plateau, From 1980 to 2000 Using Remote-Sensing and GIS Technologies
,”
J. Glaciol.
,
53
, pp.
673
676
.10.3189/002214307784409261
5.
Ma
,
R.
,
Duan
,
H.
,
Hu
,
C.
,
Feng
,
X.
,
Li
,
A.
, and
Ju
,
W.
,
2010
, “
A Half-Century of Changes in China's Lakes: Global Warming or Human Influnence?
,”
Geophys. Res. Lett.
,
37
, p.
L24106
.10.1029/2010GL045514
6.
Zhang
,
G.
,
Xie
,
H.
,
Kang
,
S.
,
Yi
,
D.
, and
Ackley
,
S. F.
,
2011
, “
Monitoring Lake Level Changes on the Tibetan Plateau Using ICES at Altimetry Data (2003–2009)
,”
Remote Sensing of Environment
,
115
, pp.
1733
1742
.10.1016/j.rse.2011.03.005
7.
Xiao
,
C.
,
Qin
,
D.
,
Yao
,
T.
,
Ding
,
Y.
,
Liu
,
S.
,
Zhao
,
L.
, and
Liu
,
Y.
,
2008
, “
Progress on Observation of Cryospheric Components and Climate-Related Studies in China
,”
Adv. Atmos. Sci.
,
25
, pp.
164
180
.10.1007/s00376-008-0164-8
8.
Xu
,
B.
,
Cao
,
J.
,
Hansen
,
J.
,
Yao
,
T.
,
Joswiak
,
D. R.
,
Wang
,
N.
,
Wu
,
G.
,
Wang
,
M.
,
Zhao
,
H.
,
Yang
,
W.
,
Liu
,
X.
, and
He
,
J.
,
2009
, “
Blacksoot and the Survival of Tibetan Glaciers
,”
Proc. Natl. Acad. Sci., U.S.A.
,
106
, pp.
22114
22118
.10.1073/pnas.0910444106
9.
Xu
,
Z. X.
,
Gong
,
T. L.
, and
Zhao
,
F. F.
,
2006
, “
Analysis of Climate Change in Tibetan Plateau over the Past 40 Years
J. Subtrop. Res. Environ.
,
1
, pp.
24
32
.
10.
Yang
,
M.
,
Nelson
,
F. E.
,
Shiklomanov
,
N. I.
,
Guo
,
D.
, and
Wan
,
G.
,
2010
, “
Permafrost Degradation and Its Environmental Effects on the Tibetan Plateau: A Review of Recent Research
,”
Earth-Sci. Rev.
,
103
, pp.
31
44
.10.1016/j.earscirev.2010.07.002
11.
Yao
,
T. D.
,
Pu
,
J. C.
,
Lu
,
A.
,
Wang
,
Y. Q.
, and
Yu
,
W. S.
,
2007
, “
Recent Glacial Retreat and Its Impact on Hydrological Processes on the Tibetan Plateau, China, and Surrounding Regions
,”
Arct., Antarct., Alp. Res.
,
39
, pp.
642
650
.10.1657/1523-0430(07-510)[YAO]2.0.CO;2
12.
Yao
,
T. D.
,
Thompson
,
L. G.
,
Musbrugger
,
V.
,
Ma
,
Y. M.
,
Zhang
,
F.
,
Yang
,
X. X.
,
Joswiak
,
D.
,
2011
,”
Together With the Arctic and the Antarctic, the Tibetan Plateau
,”
UNESCO–SCOPE–UNEP Policy Briefs Series
,
Persic
,
A.
, ed.,
ThirdPoleEnvironment, ITC Grigny
,
France
.
13.
Yao
,
T. D.
,
Wang
,
Y. Q.
,
Liu
,
S. Y.
,
Pu
,
J. C.
,
Shen
,
Y. P.
, and
Lu
,
A. X.
,
2004
, “
Recent Glacial Retreat in High Asia in China and Its Impact on Water Resource in Northwest China
,”
Sci. China, Ser. D: Earth Sci.
,
47
, pp.
1065
1075
.10.1360/03yd0256
14.
Yao
,
T.
,
Thompson
,
L.
,
Yang
,
W.
,
Yu
,
W.
,
Gao
,
Y.
,
Guo
,
X.
,
Yang
,
X.
,
Duan
,
K.
,
Zhao
,
H.
,
Xu
,
B.
,
Pu
,
J.
,
Lu
,
A.
,
Xiang
,
Y.
,
Kattel
,
D. B.
, and
Joswiak
,
D.
,
2012
, “
Different Glacier Status With Atmospheric Circulations in Tibetan Plateau and Surroundings
,”
Nat. Clim. Change
,
2
, pp.
663
667
.
15.
Korup
,
O.
, and
Montgomery
,
D. R.
,
2008
, “
Tibetan Plateau River Incision Inhibited by Glacial Stabilization of the Tsangpo Gorge
,”
Nature
,
455
, p.
07322
.10.1038/nature07322
16.
Ouimet
,
W. B.
,
Whipple
,
K. X.
,
Royden
,
L. H.
,
Sun
,
Z.
, and
Chen
,
Z.
,
2007
, “
The Influence of Large Landslides on River Incision in a Transient Landscape: Eastern Margin of the Tibetan Plateau (Sichuan, China)
,”
Geol. Soc. Am. Bull.
,
119
(
11–12
), pp.
1462
1476
.10.1130/B26136.1
17.
SourceWatch
, “
Coal Power Technologies
,” retrieved on Nov. 1,
2013
, http://www.sourcewatch.org/index.php/Coal_power_technologies
18.
M.I.T.
,
2007
, “
The Future of Coal
,” retrieved on Nov. 4,
2013
, pp.
20
22
, http://web.mit.edu/coal/The_Future_of_Coal.pdf)
19.
20.
International Energy Agency (IEA)
,
2012
, “
2012 Key World Energy Statistics
,” IEA, Paris, France.
21.
Wong
,
K. V.
, “
The Second Law of Thermodynamics and Heat Release to the Global Environment by Human Activities
,”
ASME Proceedings IMECE 2010
, Vancouver, BC, Canada.
22.
Wong
,
K. V.
, and
Chaudhry
,
S.
,
2012
, “
Use of Satellite Images for Observational and Quantitative Analysis of Urban Heat Islands around the World
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042101
.10.1115/1.4007486
23.
Wong
,
K. V.
,
Dai
,
Y.
, and
Paul
,
B.
,
2012
, “
Anthropogenic Heat Release Into the Environment
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041602
.10.1115/1.4007360
24.
Wong
,
K. V.
,
Paddon
,
A.
, and
Jimenez
,
A.
,
2013
, “
Review of World Urban Heat Island: Many Linked to Increased Mortality
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022101
.10.1115/1.4023176
25.
Vidal
,
J.
,
2013
, “
China and India ‘Water Grab' Dams Put Ecology of Himalayas in Danger
,” The Observer. Available at: http://www.theguardian.com/global-development/2013/aug/10/china-india-water-grab-dams-himalayas-danger#history-link-box
26.
Stone
,
R.
,
2008
, “
Three Gorges Dam; Into the Unknown
,”
Science
,
321
, pp.
628
632
.10.1126/science.321.5889.628
27.
“Grand Ethiopian Rennaissance Dam,” retrieved on Oct. 23,
2013
, http://en.wikipedia.org/wiki/Millennium_Dam
28.
Xua
,
B.
,
Caob
,
J.
,
Hansen
,
J.
,
Yao
,
T.
,
Joswia
,
D. R.
,
Wang
,
N.
,
Wua
,
G.
,
Wang
,
M.
,
Zhao
,
H.
,
Yang
,
W.
,
Liu
,
X.
, and
He
,
J.
,
2009
, “
Black Soot and the Survival of Tibetan Glaciers
,”
Proc. Natl. Acad. Sci., U.S.A.
,
106
(
52
), pp.
22114
22118
.10.1073/pnas.0910444106
29.
Gautam
,
R.
,
Hsu
,
N. C.
,
Lau
,
K. M.
,
Tsay
,
S. C.
, and
Kafatos
,
M.
,
2009
, “
Enhanced Pre-Monsoon Warming Over the Himalayan-Gangetic Region From 1979 to 2007
,”
Geophys. Res. Lett.
,
36
(
7
)10.1029/2009GL037641.
30.
International Energy Agency (IEA)
,
2011
, “
2011 Key World Energy Statistics
,” IEA, Paris, France.
31.
International Energy Agency (IEA)
,
2011
, “
2010 Key World Energy Statistics
,” IEA, Paris, France.
32.
Wong
,
K. V.
, and
Johnston
,
J.
,
2013
, “
Cooling Systems for Power Plants in an Energy Water Nexus Era
,”
ASME J. Energy Resour. Technol.
,
136
, p.
012001
.10.1115/1.4024918
33.
Wong
,
S.
,
2008
, “
Marching to Stop Dams on Mother Ganga
,” World Rivers Review,
23
, p. 7.
34.
Singh
,
B.
,
Kaur
,
J.
, and
Singh
,
K.
,
2010
, “
Production of Biodiesel From Used Mustard Oil and Its Performance Analysis in Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
132
, p.
031001
.10.1115/1.4002203
You do not currently have access to this content.