Rate-controlled constrained-equilibrium method has been further developed to model methane/air combustion. A set of constraints has been identified to predict the nonequilibrium evolution of the combustion process. The set predicts the ignition delay times of the corresponding detailed kinetic model to within 10% of accuracy over a wide range of initial temperatures (900 K–1200 K), initial pressures (1 atm–50 atm) and equivalence ratios (0.6–1.2). It also predicts the experimental shock tube ignition delay times favorably well. Direct integration of the rate equations for the constraint potentials has been employed. Once the values of the potentials are obtained, the concentration of all species can be calculated. The underlying detailed kinetic model involves 352 reactions among 60 H/O/N/C1-2 species, hence 60 rate equations, while the RCCE calculations involve 16 total constraints, thus 16 total rate equations. Nonetheless, the constrained-equilibrium concentrations of all 60 species are calculated at any time step subject to the 16 constraints.

References

References
1.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2002
, “
A Comprehensive Modeling Study of Iso-Octane Oxidation
,”
Combust. Flame
,
129
, pp.
253
280
.10.1016/S0010-2180(01)00373-X
2.
Benson
,
S. W.
,
1952
, “
The Induction Period in Chain Reactions
,”
J. Chem. Phys.
,
20
, pp.
1605
1612
.10.1063/1.1700223
3.
Rein
,
M.
,
1992
, “
The Partial Equilibrium Approximation in Reacting Flows
,”
Phys. Fluids A
,
4
, pp.
873
886
.10.1063/1.858267
4.
Maas
,
U.
, and
Pope
,
S. B.
,
1992
, “
Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
88
, pp.
239
264
.10.1016/0010-2180(92)90034-M
5.
Lam
,
S. H.
, and
Goussis
,
D. A.
,
1988
, “
Understanding Complex Chemical Kinetics With Computational Singular Perturbation
,”
Proc. Combust. Inst.
,
22
, pp.
931
941
.10.1016/S0082-0784(89)80102-X
6.
Oluwole
,
O.
,
Bhattacharjee
,
B.
,
Tolsma
,
J. E.
, and
Green
,
W. H.
,
2006
, “
Rigorous Valid Ranges for Optimally Reduced Kinetic Models
,”
Combust. Flame
,
146
, pp.
348
365
.10.1016/j.combustflame.2006.02.009
7.
Lu
,
T.
, and
Law
,
C. K.
,
2006
, “
Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: N-Heptane and Iso-Octane
,”
Combust. Flame
,
144
, pp.
24
36
.10.1016/j.combustflame.2005.02.015
8.
Ren
,
Z.
,
Pope
,
S. B.
,
Vladimirsky
,
A.
, and
Guckenheimer
,
J. M.
,
2006
, “
The ICE-PIC Method for the Dimension Reduction of Chemical Kinetics Coupled With Transport
,”
Chem. Phys.
,
124
, p.
114111
.
9.
Keck
,
J. C.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
, pp.
237
241
.10.1016/S0010-2180(71)80166-9
10.
Hanna
,
M.
, and
Karim
,
G. A.
,
1986
, “
The Combustion of Lean Mixtures of Methane and Air—A Kinetic Investigation
,”
ASME J. Energy Resour. Technol.
,
108
(
4
), pp.
336
342
.10.1115/1.3231286
11.
Karim
,
G. A.
,
Lam
,
H. T.
,
Petela
,
R.
, and
Rowe
,
R.
,
1987
, “
Experimental and Analytical Investigation of the Convective Diffusion of Methane Into Air
,”
ASME J. Energy Resour. Technol.
,
109
(
4
), pp.
230
234
.10.1115/1.3231352
12.
Karim
,
G. A.
, and
Hanafi
,
A. S.
,
1992
, “
An Analytical Examination of the Partial Oxidation of Rich Mixtures of Methane and Oxygen
,”
ASME J. Energy Resour. Technol.
,
114
(
2
), pp.
352
357
.10.1115/1.2905935
13.
Karim
,
G. A.
,
Hanati
,
A. S.
, and
Zhou
,
G.
,
1993
, “
A Kinetic Investigation of the Oxidation of Low Heating Value Fuel Mixtures of Methane and Diluents
,”
ASME J. Energy Resour. Technol.
,
115
(
4
), pp.
301
306
.10.1115/1.2906436
14.
Wierzba
,
I.
, and
Karim
,
G. A.
,
1990
, “
A Predictive Approach for the Flammability Limits of Methane-Nitrogen Mixtures
,”
ASME J. Energy Resour. Technol.
,
112
(
4
), pp.
251
253
.10.1115/1.2905768
15.
Bishnu
,
P.
,
Hamiroune
,
D.
, and
Metghalchi
,
M.
,
2001
, “
Development of Constrained-Equilibrium Codes and Their Applications in Non-Equilibrium Thermodynamics
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
214
220
.10.1115/1.1385517
16.
Petzold
,
L.
,
1982
, “
Differential/Algebraic Equations Are Not ODEs
,”
SIAM J. Sci. Stat. Comput.
,
3
pp.
367
384
.10.1137/0903023
17.
Keck
,
J. C.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
, pp.
125
154
.10.1016/0360-1285(90)90046-6
18.
Ugarte
,
S.
,
Gao
,
Y.
, and
Methgalchi
,
H.
,
2010
, “
Application of the Maximum Entropy Principle in the Analysis of a Non-Equilibrium Chemically Reacting Mixture
,”
Int. J. Thermodyn.
,
8
(
1
), pp.
43
53
.
19.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2009
, “
Rate-Controlled Constrained-Equilibrium Theory Applied to Expansion of Combustion Products in the Power Stroke of an Internal Combustion Engine
,”
Int. J. Thermodyn.
,
12
(
1
), pp.
44
50
.
20.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.10.3390/e14020092
21.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Rate-Controlled Constrained-Equilibrium (RCCE) Modeling of Expansion of Combustion Products in a Supersonic Nozzle
,”
AIAA J. Propulsion Power
,
28
(
4
), pp. 677–684..10.2514/1.B34545
22.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
M.
, and
Keck
,
J. C.
,
2009
, “
Combustion Modeling of Mono-Hydrocarbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
, pp.
1871
1885
.10.1016/j.combustflame.2009.05.013
23.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, available at http://www.me.berkeley.edu/gri-mech/version30/text30.html
24.
Tsang
,
W.
, and
Hampson
,
R. F.
,
1986
, “
Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds
,”
J. Phys. Chem. Ref. Data
,
15
, pp.
1087
1193
.10.1063/1.555759
25.
Petersen
,
E. L.
,
Hall
,
J. M.
,
Smith
,
S. D.
,
de Vries
,
J.
,
Amadio
,
A. R.
, and
Crofton
,
M. W.
,
2007
, “
Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
937
944
.10.1115/1.2720543
26.
Huang
,
J.
,
Hill
,
P. G.
,
Bushe
,
W. K.
, and
Munshi
,
S. R.
,
2004
, “
Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modeling
,”
Combust. Flame
,
136
, pp.
25
42
.10.1016/j.combustflame.2003.09.002
You do not currently have access to this content.