Two analytical formulations that describe the fluid interactions of slag with the porous refractory linings of gasification reactors have been derived. The first formulation considers the infiltration velocity of molten slag into the porous microstructure of the refractory material that possesses an inherent temperature gradient in the direction of infiltration. Capillary pressures are assumed to be the primary driving force for the infiltration. Considering that the geometry of the pores provides a substantially shorter length scale in the radial direction as compared with the penetration direction, a lubrication approximation was employed to simplify the equation of motion. The assumption of a fully developed flow in the pores is justified based on the extremely small Reynolds numbers of the infiltration slag flow. The second formulation describes the thickness of the slag film that flows down the perimeter of the refractory lining. The thickness of the film was approximated by equating the volumetric slag production rate of the gasification reactor to the integration of the velocity profile with respect to the lateral flow cross-sectional area of the film. These two models demonstrate that both the infiltration velocity into the refractory and the thickness of the film that forms at the refractory surface were sensitive to the viscosity of the fluid slag. The slag thickness model has been applied to predict film thicknesses in a generic slagging gasifier with assumed axial temperature distributions, using slag viscosity from the literature, both for the case of a constant slag volumetric flow rate down the gasifier wall, and for the case of a constant flyash flux distributed uniformly over the entire gasifier wall.

References

1.
International Energy Outlook
,
2011
, U.S. Energy Information Administration, Report DOE/NEIL-2011/0484. Available at: http://www.eia.gov/forecasts/ieo/.
2.
Klara
,
J.
, and
Woods
,
M.
,
2007
, “
Cost and Performance Baseline for Fossil Energy Plants
,” National Energy Technology Laboratory, DOE/NETL-2007/1281.
3.
Yang
,
L.
,
Ran
,
J.-Y.
, and
Zhang
,
L.
,
2011
, “
Mechanism and Kinetics of Pyrolysis of Coal With High Ash and Low Fixed Carbon Contents
,”
J. Energy Resour. Technol.
,
133
, p.
031701
.10.1115/1.4004786
4.
Luo
,
C.
,
Watanabe
,
T.
,
Nakamura
,
M.
,
Ueyima
,
S.
, and
Kojima
,
T.
,
2001
, “
Gasification Kinetics of Coal Chars Carbonized Under Rapid and Slow Heating Conditions at Elevated Temperatures
,”
ASME J. Energy Resour. Technol.
,
123
(1), pp.
21
26
.10.1115/1.1345701
5.
Güell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(1), p.
014001
.10.1115/1.4007660
6.
Walker
,
P. L.
,
Matsumoto
,
S.
,
Hanzawa
,
T.
,
Muira
,
T.
, and
Ismail
,
I.
,
1983
, “
Catalysis of Gasification of Coal-Derived Cokes and Chars
,”
Fuel
,
62
, pp.
140
149
.10.1016/0016-2361(83)90186-2
7.
Borio
,
R. W.
, and
Narciso
,
R. R.
,
1979
, “
The Use of Gravity Fractionation Techniques for Assessing Slagging and Fouling Potential of Coal Ash
,”
ASME J. Eng. Gas Turbines Power
,
101
(
4
), pp.
500
505
.10.1115/1.3446608
8.
Rozelle
,
P. L.
,
Pisupati
,
S. V.
, and
Scaroni
,
A. W.
,
2006
, “
Effect of Fuel Properties on the Bottom Ash Generation Rate by a Laboratory Fluidized Bed Combustor
,”
ASME J. Energy Resour. Technol.
,
129
(
2
), pp.
144
151
.10.1115/1.2719205
9.
Shannon
,
G. N.
,
Matsuura
,
H.
,
Rozelle
,
P.
,
Fruehan
,
R. J.
,
Pisupati
,
S.
, and
Sridhar
,
S.
,
2009
, “
Effect of Size and Density on the Thermodynamic Predictions of Coal Particle Phase Formation During Coal Gasification
,”
Fuel Process. Technol.
,
90
, pp.
1114
1121
.10.1016/j.fuproc.2009.05.002
10.
Bennett
,
J. P.
,
Kwong
,
K. S.
,
Dogan
,
C. P.
, and
Chinn
,
R. E.
,
2004
, “
Improved Refractory for Slagging Gasifiers in IGCC Power Systems
,”
18th Annual Conference on Fossil Energy Materials
, Oak Ridge National Laboratory, Fossil Energy Program, Oak Ridge, TN, Paper No. DOE/ARC-2004-036.
11.
Schacht
,
C. A.
,
2004
,
Refractories Handbook
,
Marcel Dekker
,
New York
.
12.
Lee
,
W. E.
, and
Zhang
,
S.
,
1999
, “
Melt Corrosion of Oxide and Oxide-Carbon Refractories
,”
Int. Mater. Rev.
,
44
(
3
), pp.
77
104
.10.1179/095066099101528234
13.
Kaneko
,
T. K.
,
Zhu
,
J.
,
Thomas
,
H.
,
Bennett
,
J. P.
, and
Sridhar
,
S.
,
2012
, “
Influence of Oxygen Partial Pressure on Synthetic Coal Slag Infiltration into Porous Al2O3 Refractory
,”
J. Am. Ceram. Soc.
,
95
(
5
), pp.
1764
1773
.10.1111/j.1551-2916.2012.05175.x
14.
Zhu
,
J.
,
Nakano
,
J.
,
Kaneko
,
T. K.
,
Mu
,
H.
,
Bennett
,
J. P.
,
Kwong
,
K.-S.
,
Rozelle
,
P.
, and
Sridhar
,
S.
,
2012
, “
Viscosity Determination of Molten Ash From Low-Grade US Coals
,”
High Temperature Mater. Process.
,
31
(
4–5
), pp.
569
580
.10.1515/htmp-2012-0094
15.
Shannon
,
G. N.
,
Rozelle
,
P. L.
,
Pisupati
,
S. V.
, and
Sridhar
,
S.
,
2008
, “
Conditions for Entrainment into a FeOx Containing Slag for a Carbon-Containing Particle in an Entrained Coal Gasifier
,”
Fuel Process. Technol.
,
89
, pp.
1379
1385
.10.1016/j.fuproc.2008.06.010
16.
Williford
,
R. E.
,
2008
, “
Effective Diffusivity and Spalling Models for Slagging Coal Gasifiers
,”
J. Am. Ceram. Soc.
,
91
(
12
), pp.
4016
4022
.10.1111/j.1551-2916.2008.02755.x
17.
Washburn
,
E. W.
,
1921
, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
17
(
3
), pp.
273
283
.10.1103/PhysRev.17.273
18.
Reynolds
,
O.
,
1901
,
Scientific Papers of Osborne Reynolds
, Vol.
2
,
Cambridge University Press
,
London, UK
19.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw Hill
,
New York
, p.
107
.
20.
Zhu
,
J.
,
Kaneko
,
T. K.
,
Mu
,
H.
,
Bennett
,
J. P.
, and
Sridhar
,
S.
,
2012
, “
Effects of Measurement Materials and Oxygen Partial Pressure on the Viscosity of Synthetic Eastern and Western United States Coal Slags
,”
Energy Fuels
,
26
(
7
), pp.
4465
4474
.10.1021/ef300632x
21.
Kaneko
,
T. K.
,
2012
, “
Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
22.
Vaisburd
,
S.
, and
Brandon
,
D. G.
,
1997
, “
A Combined Unit for Viscosity, Surface Tension and Density Measurements in Oxide Melts
,”
Meas. Sci. Technol.
,
8
, p.
822
.10.1088/0957-0233/8/7/020
23.
Matyas
,
J.
,
Sundaram
,
S. K.
,
Hicks
,
B. J.
,
Edmondson
,
A. B.
, and
Arrigoni
,
B. M.
,
2008
, “
Slag-Refractory Interaction in Slagging Coal Gasifiers
,”
7th International Symposium on High-Temperature Corrosion and Protection of Materials: Materials Science Forum
,
P.
Steinmetz
, ed.,
Trans Tech Publications, Inc.
, Stafa-Zurich, Switzerland, Vol. 595/598, Part 1, Special Issue: High Temperature Corrosion and Protection of Materials,
7
, pp.
397
405
.
24.
Choi
,
J. Y.
, and
Lee
,
H. G.
,
2003
, “
Wetting of Solid Al2O3 With Molten CaO-Al2O3-SiO2
,”
ISIJ Int.
,
43
(
9
), pp.
1348
1355
.10.2355/isijinternational.43.1348
25.
Towers
,
H.
,
1954
, “
Contact Angle Measurements of Slags on Solid Surfaces
,”
Trans. J. Br. Ceram. Soc.
,
53
(
3
), pp.
180
202
.
26.
Liang
,
Q.
,
Guo
,
X.
,
Dai
,
Z.
,
Liu
,
H.
, and
Gong
,
X.
,
2012
, “
An Investigation on the Heat Transfer Behavior and Slag Deposition of Membrane Wall in Pilot-Scale Entrained-Flow Gasifier
,”
Fuel
,
102
, pp.
491
498
.10.1016/j.fuel.2012.06.092
You do not currently have access to this content.