Distributed generation, despite not being a new concept, is assuming a leading role in the field of energy conversion, as it should contribute to the enhancement of efficiency, flexibility, and reliability of national energy systems. However, it also noted that the effective performances of small and flexible power plants is critically influenced by their actual control strategy. Moreover, it is not trivial to identify a univocal parameter to evaluate the plant performance. For instance, cost evaluation clearly responds to an industrial view of the energy supply problem, while energy consumption or polluting emissions comply with a socio economic approach. In this scenario, the optimization of the plant management is a valuable instrument to gain insight on their behavior as the control strategy is varied, as well as to promote the distributed generation development, by maximizing the plants performances. In this paper, we further develop a graph based optimization methodology to optimize the set-point of an internal combustion engine based plant used to satisfy a hospital energy load, under different seasonal load conditions (winter, summer, and transitional seasons) and energy prices. Specifically, in order to dissect the effects of the objective function selection, two different optimization criteria are considered, namely economical optimization and primary energy consumption minimization. In particular, we focus on the features of the prime mover (i.e., the internal combustion engine) control strategy and on its drivers, as a function of the prescribed objective function. Results demonstrate that in the actual Italian energy market, cost minimization does not match primary energy consumption minimization, because the latter is only influenced by energy demand time series, and equipments performance, while the former is fundamentally driven by the electricity prices time series.

References

References
1.
Prasad
,
B. S.
,
2010
, “
Energy Efficiency, Sources and Sustainability
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
020301
.10.1115/1.4001684
2.
Burak Gunes
,
M.
, and
Ellis
,
M.
,
2003
, “
Evaluation of Energy, Environmental, and Economic Characteristics and Fuel Cell Combined Heat and Power Systems for Residential Applications
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
208
220
.10.1115/1.1595112
3.
Cullen
,
B.
, and
McGovern
,
J.
,
2009
, “
The Quest for More Efficient Industrial Engines: A Review of Current Industrial Engine Development and Applications
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
021601
.10.1115/1.3120377
4.
Cardona
,
E.
, and
Piacentino
,
A.
,
2007
, “
Optimal Design of CHCP Plants in the Civil Sector by Thermoeconomics
,”
Appl. Energy
,
84
(
7–8
), pp.
729
748
.10.1016/j.apenergy.2007.01.005
5.
Doering
,
R.
, and
Lin
,
B.
,
1979
, “
Optimum Operation of a Total Energy Plant
,”
Comput. Oper. Res.
,
6
(
1
), pp.
33
38
.10.1016/0305-0548(79)90013-3
6.
Kong
,
X.
,
Wang
,
R.
,
Li
,
Y.
, and
Huang
,
X.
,
2009
, “
Optimal Operation of a Micro-Combined Cooling, Heating and Power System Driven by a Gas Engine
,”
Energy Convers. Manage.
,
50
(
3
), pp.
530
538
.10.1016/j.enconman.2008.10.020
7.
Mařík
,
K.
,
Schindler
,
Z.
, and
Stluka
,
P.
,
2008
, “
Decision Support Tools for Advanced Energy Management
,”
Energy
,
33
(
6
), pp.
858
873
.10.1016/j.energy.2007.12.004
8.
Kong
,
X.
,
Wang
,
R.
, and
Huang
,
X.
,
2005
, “
Energy Optimization Model for a CCHP System With Available Gas Turbines
,”
Appl. Therm. Eng.
,
25
, pp.
377
391
.10.1016/j.applthermaleng.2004.06.014
9.
Arivalagan
,
A.
,
Raghavendra
,
B.
, and
Rao
,
A.
,
1995
, “
Integrated Energy Optimization Model for a Cogeneration Based Energy Supply System in the Process Industry
,”
Int. J. Electr. Power Energy Syst.
,
17
(
4
), pp.
227
233
.10.1016/0142-0615(95)00037-Q
10.
Yokoyama
,
R.
, and
Ito
,
K.
,
1999
, “
Optimal Operation of a Cogeneration Plant in Consideration of Equipment Startup/Shutdown Cost
,”
ASME J. Energy Resour. Technol.
,
121
(
4
), pp.
254
261
.10.1115/1.2795991
11.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Smith
,
A.
,
2012
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
011301
.10.1115/1.4005082
12.
Spakovsky
,
M.
V.
,
Curti
, V
.
, and
Batato
,
M.
,
1995
, “
The Performance Optimization of a Gas Turbine Cogeneration/Heat Pump Facility With Thermal Storage
,”
ASME J. Eng. Gas Turbines Power
,
117
(
1
), pp.
2
9
.10.1115/1.2812777
13.
Frangopoulos
,
C.
,
Lygeros
,
A.
,
Markou
,
C.
, and
Kaloritis
,
P.
,
1996
, “
Thermoeconomic Operation Optimization of the Hellenic Aspropyrgos Refinery Combined-Cycle Cogeneration System
,”
Appl. Therm. Eng.
,
16
(
12
), pp.
949
958
.10.1016/1359-4311(95)00087-9
14.
Puttgen
,
H. B.
, and
MacGregor
,
P. R.
,
1989
, “
Optimum Scheduling Procedure for Cogenerating Small Power Producing Facilities
,”
IEEE Trans. Power Syst.
,
4
(
3
), pp.
957
964
.10.1109/59.32585
15.
Lozano
,
M.
, and
Valero
,
A.
,
1993
, “
Theory of the Exergetic Cost
,”
Energy
,
18
(
9
), pp.
939
960
.10.1016/0360-5442(93)90006-Y
16.
Temir
,
G.
, and
Bilge
,
D.
,
2004
, “
Thermoeconomic Analysis of a Trigeneration System
,”
Appl. Therm. Eng.
,
24
(
17
), pp.
2689
2699
.10.1016/j.applthermaleng.2004.03.014
17.
Tstsaronis
,
G.
, and
Pisa
,
J.
,
1994
, “
Exoergonomic Evaluation and Optimization of Energy Systems—Application to the CGAM Problem
,”
Energy
,
24
(
19
), pp.
287
321
.10.1016/0360-5442(94)90113-9
18.
Andreassi
,
L.
,
Ciminelli
,
M.
,
Feola
,
M.
, and
Ubertini
,
S.
,
2009
, “
Innovative Method for Energy Management: Modelling and Optimal Operation of Energy Systems
,”
Energy Build.
,
41
(
4
), pp.
436
444
.10.1016/j.enbuild.2008.11.010
19.
Chinneck
,
J. W.
,
2006
, “
Practical Optimization: A Gentle Introduction” (Systems and Computer Engineering)
, Carleton University, Ottawa. http://www. sce. carleton. ca/faculty/chinneck/po.html
20.
Dasgupta
,
S.
,
Papadimitriou
,
C. H.
, and
Vazirani
,
U. V.
,
2006
,
Algorithms
,
McGrow Hill
,
New York
.
21.
De
,
A. R.
, and
Musgrove
,
L.
,
1988
, “
The Optimization of Hybrid Energy Conversion Systems Using the Dynamic Programming Model-Rapsody
,”
Int. J. Energy Res.
,
12
(
3
), pp.
447
457
.10.1002/er.4440120309
22.
Fumarola
,
A.
,
Tribioli
,
L.
, and
Martini
,
F.
,
2011
, “
Methodology Procedure for Hybrid Electric Vehicles Design
,”
Proceedings of International Conference on Engines and Vehicles, SAE Conference
, SAE Technical Paper No. 2011-24-0071.
23.
Marano
, V
.
,
Rizzo
,
G.
, and
Tiano
,
F. A.
,
2012
, “
Application of Dynamic Programming to the Optimal Management of a Hybrid Power Plant With Wind Turbines, Photovoltaic Panels and Compressed Air Energy Storage
,”
Appl. Energy
,
97
(
0
), pp.
849
859
.10.1016/j.apenergy.2011.12.086
24.
Chiappini
,
D.
,
Facci
,
A. L.
,
Tribioli
,
L.
, and
Ubertini
,
S.
,
2011
, “
SOFC Management in Distributed Energy Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
8(3)
, p.
031015
.10.1115/1.4002907
25.
Andreassi
,
L.
, and
Ubertini
,
S.
,
2010
, “
Optimal Management of Power Systems
,”
Energy Management
,
Francisco Maria Perez
, ed.,
Intech
, Vukovar, Croatia.
26.
Bella
,
G.
,
Facci
,
A. L.
,
Fumarola
,
A.
,
Tribioli
,
L.
, and
Ubertini
,
S.
,
2011
, “
Comparison Among Different CCHP Plant Configurations With Energy Flows Optimization
,”
Proceedings of the Third International Conference on Applied Energy
.
27.
Gestore del Mercato Elettrico, “
Fonti Rinnovabili: Guida Alla Vendita dell'energia ed al Mercato Degli Incentivi
,” In Italian, April
2013
, www.mercatoelettrico.org
28.
AEEG,
2008
, “
Il”Ritiro dedicato” Dell'energia Elettrica Prodotta da Impianti Fino a 10 MVA e da Impianti Alimentati da Fonti Rinnovabili Non Programmabili: La Delibera n. 280/07
,” In Italian, www.autorita.energia.it
29.
Li
,
C.
,
Shi
,
Y.
, and
Huang
,
X.
,
2008
, “
Sensitivity Analysis of Energy Demands on Performance of CCHP System
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3491
3497
.10.1016/j.enconman.2008.08.006
30.
Gestore Mercati Energetici,
2013
, “
Esiti MGP Prezzi
,” http://www.mercatoelettrico.org/It/Esiti/MGP/EsitiMGP.aspx
34.
Onovwiona
,
H.
, and
Ugursal
,
V.
,
2006
, “
Residential Cogeneration Systems: Review of the Current Technology
,”
Renewable Sustainable Energy Rev.
,
10
(
5
), pp.
389
431
.10.1016/j.rser.2004.07.005
35.
Fabrizio
,
E.
,
Filippi
,
M.
, and
Virgone
,
J.
,
2009
, “
An Hourly Modelling Framework for the Assessment of Energy Sources Exploitation and Energy Converters Selection and Sizing in Buildings
,”
Energy Build.
,
41
(
10
), pp.
1037
1050
.10.1016/j.enbuild.2009.05.005
You do not currently have access to this content.