In many cogeneration systems, one or more boilers are used in hot standby to meet the plant demand of steam in case of failure or upset in the cogeneration unit. Such boilers need to quickly respond to sudden and large steam load changes. However, fast changes in the firing rate cause transient changes in both the drum-boiler steam pressure and drum level, in addition to the potential of developing of thermal stresses in the walls of steam risers. A genetic algorithm (GA) based optimization scheme is proposed for tuning the conventional boiler control loops to maximize the ability of the boiler to respond to large steam demand while keeping the fluctuations in pressure, drum level, and feed rate within acceptable operation limits. A nonlinear model for an actual boiler is first built, validated, and then, it is used to demonstrate the performance of the boiler with the proposed control loop optimization.

References

1.
Parry
,
A.
,
Peterot
,
J. F.
, and
Vivier
,
M. J.
,
1985
, “
Recent Progress in SG Level Control in French PWR Plants
,”
Proceedings of International Conference on Boiler Dynamics and Control in Nuclear Powerstations
, pp.
81
88
.
2.
Astrom
,
K. J.
, and
Eklund
,
K.
,
1972
, “
A Simplified Non-Linear Model of a Drum Boiler-Turbine Unit
,”
Int. J. Control
,
16
, pp.
145
169
.
3.
Astrom
,
K. J.
, and
Bell
,
R. D.
,
1988
, “
Simple Drum-Boiler Models
,”
IFAC Power Systems Modelling and Control Applications
, pp.
123
127
.
4.
de Mello
,
F. P.
,
1991
, “
Boiler Models for System Dynamic Performance Studies
,”
IEEE Trans. Power Syst.
,
6
, pp.
66
74
.
5.
Peet
,
W. J.
, and
Leung
,
T. K. P.
,
1995
, “
Development and Application of a Dynamic Simulation Model for a Drum Type Boiler With Turbine Bypass System
,”
International Power Engineering Conference
, pp.
1
6
.
6.
Astrom
,
K. J.
, and
Bell
,
R. D.
,
1996
, “
A Fourth Order Non-Linear Model for Drum-Boiler Dynamics
,”
13th Triennial World Congress
, pp.
31
36
.
7.
Flynn
,
M. E.
, and
O'Malley
,
M. J.
,
1999
, “
A Drum Boiler Model for Long Term Power System Dynamic Simulation
,”
IEEE Trans. Power Syst.
,
14
, pp.
209
217
.
8.
Astrom
,
K. J.
, and
Bell
,
R. D.
,
2000
, “
Drum—Boiler Dynamics
,”
Automatica
,
36
, pp.
363
378
.
9.
Dong
,
Y.
, and
Tingkuan
,
C.
,
2001
, “
HGSSP-A Computer Program for Simulation of Once-Through Boiler Start-Up Behavior
,”
Heat Transfer Eng.
,
22
(
5
), pp.
50
60
.
10.
Kim
,
H.
, and
Choi
,
S.
,
2005
, “
A Model on Water Level Dynamics in Natural Circulation Drum-Type Boilers
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
786
796
.
11.
Huang
,
Y.
,
Li
,
N.
,
Shi
,
Y.
, and
Yi
,
Y.
,
2006
, “
Genetic Adaptive Control for Drum Level of a Power Plant Boiler
,”
IMACS Multiconference on Computational Engineering in Systems Applications
, pp.
1965
1968
.
12.
Dimeo
,
R.
, and
Lee
,
K. Y.
,
1995
, “
Boiler-Turbine Control System Design Using a Genetic Algorithm
,”
IEEE Trans. Energy Convers.
,
10
, pp.
752
759
.
13.
Pellegrinetti
,
G.
, and
Bentsman
,
J.
,
1996
, “
Nonlinear Control Oriented Boiler Modeling-a Benchmark Problem for Controller Design
,”
IEEE Trans. Control Syst. Technol.
,
4
, pp.
57
64
.
14.
Pedersen
,
T. S.
,
Hansen
,
T.
, and
Hangstrup
,
M.
,
1996
, “
Process-Optimizing Multivariable Control of a Boiler System
,”
Control '96, UKACC International Conference on (Conf. Publ. No. 427)
, Vol.
2
, pp.
787
792
.
15.
Cheng
,
C. M.
, and
Rees
,
N. W.
,
1997
, “
Hierarchical and Heuristical Fuzzy Model Based Control of Drum-Boiler Power Plant
,”
Proceedings of the Sixth IEEE International Conference on Fuzzy Systems
, Vol.
2
, pp.
629
634
.
16.
Kai-Pong
,
C.
, and
Li-Xin
,
W.
,
1998
, “
Comparison of Fuzzy and PI Controllers for a Benchmark Drum-Boiler Model
,”
Proceedings of the 1998 IEEE International Conference on Control Applications
, Vol.
2
, pp.
958
962
.
17.
Lu
,
C. X.
,
Rees
,
N. W.
, and
Donaldson
,
S. C.
,
2000
, “
The Use of the Astrom Bell Model for the Design of Drum Level Controllers in Power Plant Boilers
,”
Energy Australia, Sydney
.
18.
Yang
,
P.
,
Peng
,
D. G.
,
Yang
,
Y. H.
, and
Wang
,
Z. P.
,
2004
, “
Neural Networks Internal Model Control for Water Level of Boiler Drum in Power Station
,”
Proceedings of 2004 International Conference on Machine Learning and Cybernetics
, Vol.
5
, pp.
3300
3303
.
19.
Daren
,
Y.
, and
Zhiqiang
,
X.
,
2005
, “
Nonlinear Coordinated Control of Drum Boiler Power Unit Based on Feedback Linearization
,”
IEEE Trans. Energy Convers.
,
20
(
1
), pp.
204
210
.
20.
Wang
,
W.
,
Li
,
H. X.
, and
Zhang
,
J.
,
2002
, “
Intelligence-Based Hybrid Control for Power Plant Boiler
,”
IEEE Trans. Control Syst. Technol.
,
10
, pp.
280
287
.
21.
Tan
,
W.
,
Marquez
,
H. J.
, and
Chen
,
T.
,
2002
, “
Multivariable Robust Controller Design for a Boiler System
,”
IEEE Trans. Control Syst. Technol.
,
10
, pp.
735
742
.
22.
Nanhua
,
Y.
,
Wentong
,
M.
, and
Ming
,
S.
,
2006
, “
Application of Adaptive Grey Predictor Based Algorithm to Boiler Drum Level Control
,”
Energy Convers. Manage.
,
47
, pp.
2999
3007
.
23.
Aranda
,
E.
,
Frye
,
M.
, and
Chunjiang
,
Q.
,
2008
, “
Model Development, State Estimation, and Controller Design of a Nonlinear Utility Boiler System
,”
IEEE International Conference on Industrial Technology, ICIT 2008
, pp.
1
6
.
24.
Wen
,
C.
, and
Ydstie
,
B. E.
,
2009
, “
Passivity Based Control of Drum Boiler
,”
American Control Conference, ACC '09
, pp.
1586
1591
.
25.
Kruger
,
K.
,
Rode
,
M.
, and
Franke
,
R.
,
2001
, “
Optimal Control for Fast Boiler Start-Up Based on a Non-Linear Model and Considering the Thermal Stress on Thick-Walled Components
,”
Proceedings of IEEE International Conference on Control Applications
, Mexico City, Mexico, Sept. 5–7, pp.
570
576
.
26.
Kruger
,
K.
,
Franke
,
R.
, and
Rode
,
M.
,
2004
, “
Optimization of Boiler Start-Up Using a Nonlinear Boiler Model and Hard Constraints
,”
Energy
,
29
, pp.
2239
2251
.
27.
Franke
,
R.
,
Rode
,
M.
, and
Krüger
,
K.
,
2003
, “
On-Line Optimization of Drum Boiler Startup
,”
Proceedings of 3rd International Modelica Conference
,
P.
Fritzson
, ed., Linköping, Nov. 3–4, pp.
287
296
.
28.
Li
,
B.
,
Chen
,
T.
, and
Yang
,
D.
,
2005
, “
DBSSP-A Computer Program for Simulation of Controlled Circulation Boiler and Natural Circulation Boiler Start Up Behavior
,”
Energy Convers. Manage.
,
46
, pp.
533
549
.
29.
Habib
,
M. A.
,
Alzaharnah
,
I.
,
El-Shafei
,
M.
,
Al-Anizi
,
S.
,
Al-Awwad
,
M. Y.
, and
Hajji
,
M.
,
2013
, “
Influence of Boiler Load Swing Rates on Response of Drum Water Level
,”
ASME J. Energy Resour. Technol.
,
135
(
2
)
, p.
022904
.10.1115/1.4023329
30.
Ilamathi
,
P.
,
Selladurai
,
V.
, and
Balamurugan
,
K.
,
2013
, “
Modeling and Optimization of Unburned Carbon in Coal-Fired Boiler Using Artificial Neural Network and Genetic Algorithm
,”
Energy Resour. Technol.
,
135
(
3
)
, p.
032201
.10.1115/1.4023328
31.
Jain
, V
.
,
Basu
,
P.
, and
Groulx
,
D.
,
2010
, “
A Method for Reduction in the Start-Up Time of a Bubbling Bed Boiler Combustor
,”
ASME J. Energy Resour. Technol.
,
132
(
3
)
, p.
031401
.10.1115/1.4002135
32.
Gowreesh
,
S.
,
Estrada
,
J.
,
Ong
,
C. K.
, and
Xiao
,
T. K.
,
2011
, “
Experimental Investigation of Boiler Pressure Behavior in Closed-Open-Closed System
,”
ASME J. Energy Resour. Technol.
,
133
(
2
)
, p.
024501
.10.1115/1.4003882
33.
Cho
,
H.
,
Luck
,
R.
, and
Chamra
,
L. M.
,
2010
, “
Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation
,”
ASME J. Energy Resour. Technol.
,
132
(
1
)
, p.
012401
.10.1115/1.4000920
34.
Habib
,
M. A.
,
2009
, “
Determination of Maximum Boiler Swing Rates
,” King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia, Final Report, Project# ME2277, R1.
35.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor, MI
.
36.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley
,
Boston, MA
.
37.
Mitchell
,
M.
,
1996
,
An Introduction to Genetic Algorithms
,
MIT
,
Cambridge, MA
.
38.
Al-Zaharnah
,
I.
,
Al-Anizi
,
S.
,
Al-Awwad
,
M. Y.
,
Habib
,
M. A.
,
Said
,
S. A. M.
,
El-Shafei
,
M.
,
Hajji
,
M.
, and
Merah
,
N.
,
2010
, “
Influence of Boiler Load Swing Rates on Effective Stresses of Drum Boiler Riser Tubes
,”
ASME J. Pressure Vessel Technol.
,
132
(
6
)
, p.
61301
.10.1115/1.4001653
You do not currently have access to this content.