Exergy losses represent true losses of potential to generate a desired product, exergy efficiencies always provide a measure of approach to ideality, and the links between exergy and both economics and environmental impact can help develop improvements. In this study, PV-coupled Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT)-electrolyzer hybrid power generation system is considered to determine the contribution of different hybrid system components in the total exergy loss. The number of panels, the power of SOFC–GT, and the power of electrolyzer can have different values. Therefore, to obtain the optimum combination from ecological, economical, and reliability points of view, a multi-objective optimization algorithm (PESA) is considered. This optimization method chooses a set of optimum solutions that is known as Pareto frontier. The exergy loss of some of these optimum solutions is compared with each other. The effect of panel angle and SOFC–GT fuel type on the hybrid system exergy loss is considered in this study. Also, the hybrid system exergy loss is determined in different months of the year to obtain the worst month from exergy loss view.

References

References
1.
Baniasad Askari
,
I.
, and
Ameri
,
M.
,
2009
, “
Optimal Sizing of Photovoltaic Battery Power Systems in a Remote Region in Kerman, Iran
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
223
, pp.
563
570
.10.1243/09576509JPE717
2.
Nafeh
,
A.
,
2010
, “
Proposed Technique for Optimally Sizing a PV/Diesel Hybrid System
,”
International Conference on Renewable Energies and Power Quality in Spain
.
3.
Khatiba
,
T.
,
Mohameda
,
A.
,
Sopianb
,
K.
, and
Mahmoud
,
M.
,
2011
, “
Optimal Sizing of Building Integrated Hybrid PV/Diesel Generator System for Zero Load Rejection for Malaysia
,”
Energy Build.
,
43
, pp.
3430
3435
.10.1016/j.enbuild.2011.09.008
4.
Baniasad Askari
,
I.
, and
Ameri
,
M.
,
2011
, “
The Effect of Fuel Price on the Economic Analysis of Hybrid (Photovoltaic/Diesel/Battery) System in Iran
,”
Energy Source Part B: Econ. Plann. Policy
,
6
, pp.
357
377
.10.1080/15567240903030539
5.
Nabil
,
A. A.
,
Miyatake
,
M.
, and
Al-Othman
,
A. K.
,
2008
, “
Power Fluctuations Suppression of Stand-Alone Hybrid Generation Combining Solar Photovoltaic/Wind Turbine and Fuel Cell Systems
,”
Energy Convers. Manage.
,
49
, pp.
2711
2719
.10.1016/j.enconman.2008.04.005
6.
Sergio
,
B.
,
Silva
,
S. B.
,
de-Oliveira
,
M. A. G.
, and
Severino
,
M. M.
,
2010
, “
Economic Evaluation and Optimization of a Photovoltaic Fuel Cell Batteries Hybrid System for use in the Brazilian Amazon
,”
Energy Policy
,
38
, pp.
6713
6723
.10.1016/j.enpol.2010.06.041
7.
Eroglu
,
M.
,
Dursun
,
E.
,
Sevencan
,
S.
,
Song
,
J.
,
Yazici
,
S.
, and
Kilic
,
O.
,
2011
, “
A Mobile Renewable House Using PV/Wind/Fuel Cell Hybrid Power System
,”
Int. J. Hydrogen Energy
,
36
, pp.
7985
7992
.10.1016/j.ijhydene.2011.01.046
8.
Harvey
,
S. P.
, and
Richter
,
H. J.
,
1994
, “
Gas Turbine Cycles With Solid Oxide Fuel Cells—Part I: Improved Gas Turbine Power Plant Efficiency by Use of Recycled Exhaust Gases and Fuel Cell Technology
,”
ASME J. Energy Resour. Technol.
,
116
(
4
), pp.
305
311
.10.1115/1.2906458
9.
Harvey
,
S. P.
, and
Richter
,
H. J.
,
1994
, “
Gas Turbine Cycles With Solid Oxide Fuel Cells—Part II: A Detailed Study of a Gas Turbine Cycle With an Integrated Internal Reforming Solid Oxide Fuel Cell
,”
ASME J. Energy Resour. Technol.
,
116
(
4
), pp.
312
318
.10.1115/1.2906459
10.
Lobachyov
,
K.
, and
Richter
,
H. J.
,
1996
, “
Combined Cycle Gas Turbine Power Plant with Coal Gasification and Solid Oxide Fuel Cell
,”
ASME J. Energy Resour. Technol.
,
118
(
4
), pp.
285
292
.10.1115/1.2793875
11.
Cheddie
,
F. D.
,
2011
, “
Thermo-Economic Optimization of an Indirectly Coupled Solid Oxide Fuel Cell/Gas Turbine Hybrid Power Plant
,”
Int. J. Hydrogen Energy
,
36
, pp.
1702
1709
.10.1016/j.ijhydene.2010.10.089
12.
Santin
,
M.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A.
,
2010
, “
Thermoeconomic Analysis of SOFC–GT Hybrid Systems Fed by Liquid Fuels
,”
Energy
,
35
, pp.
1077
1083
.10.1016/j.energy.2009.06.012
13.
Bernal-Agust
,
J. L.
, and
Dufo-Lopez
,
R.
,
2009
, “
Multi-Objective Design and Control of Hybrid Systems Minimizing Costs and Unmet Load
,”
Electric Power Syst. Res.
,
79
, pp.
170
180
.10.1016/j.epsr.2008.05.011
14.
Dufo-Lopez
,
R.
, and
Bernal-Agust
,
J. L.
,
2008
, “
Multi-Objective Design of PV Wind–Diesel–Hydrogen–Battery Systems
,”
Renew. Energy
,
33
, pp.
2559
2572
.10.1016/j.renene.2008.02.027
15.
Sadeghi
,
S.
, and
Ameri
,
M.
,
2012
, “
Multi-Objective Optimization of PV-Battery Power Systems
,”
20th Annual International Conference on Mechanical Engineering of Iran
.
16.
Rosen
,
M. A.
, and
Dincer
,
I.
,
1997
, “
Sectoral Energy and Exergy Modeling of Turkey
,”
ASME J. Energy Resour. Technol.
,
119
(
3
), pp.
200
204
.10.1115/1.2794990
17.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), pp.
112
120
.10.1115/1.3120381
18.
Saidura
,
R.
,
BoroumandJazi
,
G.
,
Mekhlif
,
S.
, and
Jameel
,
M.
,
2012
, “
Exergy Analysis of Solar Energy Applications
,”
J. Renewable Sustainable Energy Rev.
,
16
, pp.
350
356
.10.1016/j.rser.2011.07.162
19.
Dumitrescu
,
A.
,
Lee
,
T. W.
, and
Roy
,
R. P.
,
2011
, “
Computational Model of a Hybrid Pressurized Solid Oxide Fuel Cell Generator/Gas Turbine Power Plant
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), pp.
44
56
.10.1115/1.4003707
20.
Stamatis
,
A.
,
Vinni
,
Ch.
,
Bakalis
,
D.
,
Tzorbatzoglou
,
F.
, and
Tsiakaras
,
P.
,
2012
, “
Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell–Gas Turbine Hybrid System Fed With Ethanol
,”
Energies
,
5
, pp.
4268
4287
.10.3390/en5114268
21.
Haseli
,
Y.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2008
, “
Thermodynamic Analysis of a Combined Gas Turbine Power System With a Solid Oxide Fuel Cell Through Exergy
,”
J. Thermochim. Acta
,
480
, pp.
1
9
.10.1016/j.tca.2008.09.007
22.
Casasa
,
Y.
,
Arteagaa
,
L. E.
,
Moralesa
,
M.
,
Rosab
,
E.
,
Peraltaa
,
L. M.
, and
Dewulf
,
J.
,
2010
, “
Energy and Exergy Analysis of an Ethanol Fueled Solid Oxide Fuel Cell Power Plant
,”
Chem. Eng. J.
,
162
, pp.
1057
1066
.10.1016/j.cej.2010.06.021
23.
Dincer
,
I.
,
Rosen
,
M. A.
, and
Zamfirescu
,
C.
,
2009
, “
Exergetic Performance Analysis of a Gas Turbine Cycle Integrated With Solid Oxide Fuel Cells
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), pp.
169
179
.10.1115/1.3185348
24.
Bang-Moller
,
C.
,
Rokni
,
M.
, and
Elmegaard
,
B.
,
2011
, “
Exergy Analysis and Optimization of a Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System
,”
Energy
,
36
, pp.
4740
4752
.10.1016/j.energy.2011.05.005
25.
Calderon
,
M.
,
Calderon
,
A. J.
,
Ramiro
,
A.
,
Gonzalez
,
J. F.
, and
Gonzalez
,
I.
,
2011
, “
Evaluation of a Hybrid Photovoltaic Wind System With Hydrogen Storage Performance Using Exergy Analysis
,”
Int. J. Hydrogen Energy
,
36
, pp.
5751
5762
.10.1016/j.ijhydene.2011.02.055
26.
Hosseini
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2013
, “
Hybrid Solar Fuel Cell Combined Heat and Power Systems for Residential Applications: Energy and Exergy Analyses
,”
J. Power Sour.
,
221
, pp.
372
380
.10.1016/j.jpowsour.2012.08.047
27.
Skarstein
,
O.
, and
Uhlen
,
K.
,
1989
, “
Design Considerations With Respect to Long-Term Diesel Saving in Wind/Diesel Plants
,”
Wind Eng.
,
13
, pp.
72
87
.
28.
Ould Bilal
,
B.
,
Sambou
,
V.
,
Ndiaye
,
P. A.
,
Kebe
,
C. M.
, and
Ndongo
,
M.
,
2013
Multi-objective Design of PV–Wind–Batteries Hybrid Systems by Minimizing the Annualized Cost System and the Loss of Power Supply Probability (LPSP)
,”
IEEE International Conference on Industrial Technology (ICIT 2013)
,
Cape Town, Western Cape, South Africa
, pp.
861
868
.
29.
Trading Economics,
2013
, “The Benchmark Interest Rate in the United States,” http://www.tradingeconomics.com/united-states/interest-rate
30.
Corne
,
W.
,
Knowles
,
D.
, and
Oates
,
J.
,
2000
, “
The Pareto Envelope-Based Selection Algorithm for Multi-Objective Optimization
,”
Lect. Notes Comput. Sci.
,
1917
, pp.
839
848
.10.1007/3-540-45356-3
31.
Index Mundi,
2013
, “Historical Commodity Prices-Average Monthly Prices for a Large Number of Commodities Along With Daily Prices for a Select Few,” http://www.indexmundi.com/commodities/
32.
Mekhilef
,
S.
,
Saidurb
,
R.
, and
Safari
,
A.
,
2012
, “
Comparative Study of Different Fuel Cell Technologies
,”
Renew. Energy
,
16
, pp.
981
989
.10.1016/j.rser.2011.09.020
33.
Wholesale Solar,
2013
, “Source for Discount Prices on Solar Panels and Renewable Energy Products,” http://www.wholesalesolar.com/
34.
Whole Building Design Guide,
2013
, “A Program of the National Institute of Building Sciences,” http://www.wbdg.org/resources/
35.
Integrated Resource Plan,
2010
, “Seattle City Light 2010 Integrated Resource Plan,” http://www.seattle.gov
You do not currently have access to this content.