A review of literature has been conducted to survey the kinetic data of low-density polyethylene (LDPE) pyrolysis. The review reveals large variations in the reported global kinetic parameters. The cause of variation has been identified to be the difference in the experimental techniques, including thermogravimetric analysis (TGA) and non-TGA methods. Even within the nonisothermal TGA data, large variations have been observed at heating rate of 20 K/min, while the variations are insignificant at lower heating rate regimes (2–10 K/min), indicating the influence of heat/mass transfer resistance controlling the kinetics. Detailed analysis revealed that most of the current techniques are unable to capture all the relevant data necessary for estimating the kinetic parameters of the aforementioned process. The outcome of this review work thrusts the need for a better experimental technique to estimate the kinetic parameters of complex reactions, such as polymer pyrolysis.

References

References
1.
“Rising Demand to Fuel Regional Plastics Industry,” Press Release by Expocenter Sharjah, http://www.expo-centre.ae/en/pressread.asp?id=738, 12/2010/2011.
2.
Tukker
,
A.
,
Simons
,
L.
, and
Wiegersma
,
S.
,
1999
, “
Chemical Recycling of Plastic Waste (PVC and Other Resins)
,” Technical Report No. STB-99-55, TNO institute of Strategy, Technology and Policy, Delft, The Netherlands.
3.
Marcilla
,
A.
,
Beltrán
,
M. I.
, and
Navarro
,
R.
,
2009
, “
Evolution of Products During the Degradation of Polyethylene in a Batch Reactor
,”
J. Anal. Appl. Pyrolysis
,
86
(
1
), pp.
14
21
.10.1016/j.jaap.2009.03.004
4.
Serrano
,
D. P.
,
Aguado
,
J.
,
Escola
,
J. M.
, and
Garagorri
,
E.
,
2001
, “
Conversion of Low Density Polyethylene into Petrochemical Feedstocks Using a Continuous Screw Kiln Reactor
,”
J. Anal. Appl. Pyrolysis
,
58–59
(
0
), pp.
789
801
.10.1016/S0165-2370(00)00153-4
5.
Williams
,
P. T.
, and
Williams
,
E. A.
,
1999
, “
Fluidised Bed Pyrolysis of Low Density Polyethylene to Produce Petrochemical Feedstock
,”
J. Anal. Appl. Pyrolysis
,
51
(
1–2
), pp.
107
126
.10.1016/S0165-2370(99)00011-X
6.
Sodero
,
S. F.
,
Berruti
,
F.
, and
Behie
,
L. A.
,
1996
, “
Ultrapyrolytic Cracking of Polyethylene—A High Yield Recycling Method
,”
Chem. Eng. Sci.
,
51
(
11
), pp.
2805
2810
.10.1016/0009-2509(96)00156-X
7.
Kaminsky
,
W.
,
Schlesselmann
,
B.
, and
Simon
,
C.
,
1995
, “
Olefins From Polyolefins and Mixed Plastics by Pyrolysis
,”
J. Anal. Appl. Pyrolysis
,
32
, pp.
19
27
.10.1016/0165-2370(94)00830-T
8.
Westerhout
,
R. W. J.
,
Waanders
,
J.
,
Kuipers
,
J. A. M.
, and
van Swaaij
,
W. P. M.
,
1997
, “
Kinetics of the Low-Temperature Pyrolysis of Polyethene, Polypropene, and Polystyrene Modeling, Experimental Determination, and Comparison with Literature Models and Data
,”
Ind. Eng. Chem. Res.
,
36
(
6
), pp.
1955
1964
.10.1021/ie960501m
9.
Johannes
,
I.
,
Tamvelius
,
H.
, and
Tiikma
,
L.
,
2004
, “
A Step-by-Step Model for Pyrolysis Kinetics of Polyethylene in an Autoclave Under Non-Linear Increase of Temperature
,”
J. Anal. Appl. Pyrolysis
,
72
(
1
), pp.
113
119
.10.1016/j.jaap.2004.03.007
10.
Aboulkas
,
A.
,
El Harfi
,
K.
, and
El Bouadili
,
A.
,
2010
, “
Thermal Degradation Behaviors of Polyethylene and Polypropylene. Part I: Pyrolysis Kinetics and Mechanisms
,”
Energy Convers. Manage.
,
51
(
7
), pp.
1363
1369
.10.1016/j.enconman.2009.12.017
11.
Kayacan
,
I.
, and
Dogan
,
O. M.
,
2008
, “
Pyrolysis of Low and High Density Polyethylene. Part I: Non-Isothermal Pyrolysis Kinetics
,”
Energy Source, Part A
,
30
(
5
), pp.
385
391
.10.1080/15567030701457079
12.
Ballice
,
L.
,
2001
, “
A Kinetic Approach to the Temperature-Programmed Pyrolysis of Low- and High-Density Polyethylene in a Fixed Bed Reactor: Determination of Kinetic Parameters for the Evolution of n-Paraffins and 1-Olefins
,”
Fuel
,
80
(
13
), pp.
1923
1935
.10.1016/S0016-2361(01)00067-9
13.
Sinfronio
,
F. S. M.
,
Santos
,
J. C. O.
,
Pereira
,
L. G.
,
Souza
,
A. G.
,
Conceica
,
M. M.
,
Fernandes
,
V. J.
, Jr
, and
Fonseca
,
V. M.
,
2005
, “
Kinetic of Thermal Degradation of Low-Density and High-Density Polyethylene by Non-Isothermal Thermogravimetry
,”
J. Therm. Anal. Calorim.
,
79
(
2
), pp.
393
399
.10.1007/s10973-005-0072-4
14.
Zong
,
R.
,
Wang
,
Z.
,
Liu
,
N.
,
Hu
,
Y.
, and
Liao
,
G.
,
2005
, “
Thermal Degradation Kinetics of Polyethylene and Silane-Crosslinked Polyethylene
,”
J. Appl. Polym. Sci.
,
98
(
3
), pp.
1172
1179
.10.1002/app.22124
15.
Aguado
,
R.
,
Olazar
,
M.
,
Gaisan
,
B.
,
Prieto
,
R.
, and
Bilbao
,
J.
,
2002
, “
Kinetic Study of Polyolefin Pyrolysis in a Conical Spouted Bed Reactor
,”
Ind. Eng. Chem. Res.
,
41
(
18
), pp.
4559
4566
.10.1021/ie0201260
16.
Park
,
W. J.
,
Cheon Oh
,
S.
,
Lee
,
P. H.
,
Kim
,
T. H.
, and
Yoo
,
O. K.
,
2000
, “
A Kinetic Analysis of Thermal Degradation of Polymers Using a Dynamic Method
,”
Polym. Degrad. Stab.
,
67
(
3
), pp.
535
540
.10.1016/S0141-3910(99)00155-X
17.
Cai
,
J.
,
Wang
,
Y.
,
Zhou
,
L.
, and
Huang
,
Q.
,
2008
, “
Thermogravimetric Analysis and Kinetics of Coal/Plastic Blends During Co-pyrolysis in Nitrogen Atmosphere
,”
Fuel Process.Technol.
,
89
(
1
), pp.
21
27
.10.1016/j.fuproc.2007.06.006
18.
Encinar
,
J. M.
, and
González
,
J. F.
,
2008
, “
Pyrolysis of Synthetic Polymers and Plastic Wastes-Kinetic Study
,”
Fuel Process. Technol.
,
89
(
7
), pp.
678
686
.10.1016/j.fuproc.2007.12.011
19.
Westerhout
,
R. W. J.
,
Balk
,
R. H. P.
,
Meijer
,
R.
,
Kuipers
,
J. A. M.
, and
van Swaaij
,
W. P. M.
,
1997
, “
Examination and Evaluation of the Use of Screen Heaters for the Measurement of the High Temperature Pyrolysis Kinetics of Polyethene and Polypropene
,”
Ind. Eng. Chem. Res.
,
36
(
8
), pp.
3360
3368
.10.1021/ie960502e
20.
Reddy
,
K. S. K.
,
Kannan
,
P.
,
Al Shoaibi
,
A.
, and
Srinivasakannan
,
C.
,
2012
, “
Thermal Pyrolysis of Polyethylene in Fluidized Beds: Review of the Influence of Process Parameters on Product Distribution
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
034001
.10.1115/1.4006790
21.
Gupta
,
A. K.
,
Ilanchezhian
,
E.
, and
Keating
,
E. L.
,
1996
, “
Thermal Destruction Behavior of Plastic and Non-Plastic Wastes in a Laboratory-Scale Facility
,”
ASME J. Energy Resour. Technol.
,
118
(
4
), pp.
269
276
.10.1115/1.2793873
22.
Lin
,
Y. H.
,
Wei
,
T. T.
,
Yang
,
M. H.
, and
Lee
,
S. L.
,
2013
, “
Post Consumer Plastic Waste Over Post-Use Cracking Catalysts for Producing Hydrocarbon Fuels
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
011701
.10.1115/1.4007661
23.
Brown
,
M. E.
,
Maciejewski
,
M.
,
Vyazovkin
,
S.
,
Nomen
,
R.
,
Sempere
,
J.
,
Burnham
,
A.
,
Opfermann
,
J.
,
Stery
,
R.
,
Anderson
,
H. L.
,
kemmler
,
A.
,
Keuleers
,
R.
,
Janssens
,
J.
,
Desseyn
,
H. O.
,
Li
,
C.
,
Tang
,
T. B.
,
Roduit
,
B.
,
Malek
,
J.
, and
Mitsuhashi
,
T.
,
2000
, “
Computational Aspects of Kinetic Analysis: Part A: The ICTAC Kinetics Project-Data, Methods and Results
,”
Thermochim. Acta
,
355
(
1–2
), pp.
125
143
.10.1016/S0040-6031(00)00443-3
24.
Roduit
,
B.
,
2000
, “
Computational Aspects of Kinetic Analysis.: Part E: The ICTAC Kinetics Project—Numerical Techniques and Kinetics of Solid State Processes
,”
Thermochim. Acta
,
355
(
1–2
), pp.
171
180
.10.1016/S0040-6031(00)00447-0
25.
Sergey
,
V.
,
2000
, “
Computational Aspects of Kinetic Analysis.: Part C. The ICTAC Kinetics Project—The Light at the End of the Tunnel?
,”
Thermochim. Acta
,
355
(
1–2
), pp.
155
163
.10.1016/S0040-6031(00)00445-7
26.
Rhett
,
M. J.
, and
Williams
,
A.
,
2011
, “
Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
041801
.
27.
Yang
,
L.
,
Ran
,
J. Y.
, and
Zhang
,
L.
,
2011
, “
Mechanism and Kinetics of Pyrolysis of Coal With High Ash and Low Fixed Carbon Contents Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031701
.10.1115/1.4004786
28.
Bockhorn
,
H.
,
Hornung
,
A.
, and
Hornung
,
U.
,
1998
, “
Stepwise Pyrolysis for Raw Material Recovery From Plastic Waste
,”
J. Anal. Appl. Pyrolysis
,
46
(
1
), pp.
1
13
.10.1016/S0165-2370(98)00066-7
29.
Uemichi
,
Y.
, and
Suzuki
,
T.
,
1999
, “
H-Gallosilicate-Catalyzed Degradation of Polyethylene into Aromatic Hydrocarbons Using Different Types of Reactors
,”
Chem. Lett.
,
11
, pp.
1137
1138
.10.1246/cl.1999.1137
30.
Miskolczi
,
N.
,
Bartha
,
L.
,
Deak
,
G. Y.
,
Jover
,
B.
, and
Kallo
,
D.
,
2004
, “
Kinetic Model of the Chemical Recycling of Waste Polyethylene into Fuels
,”
Process Saf. Environ. Prot.
,
82
(
3
), pp.
223
229
.10.1205/095758204323065984
31.
Costa
,
P. A.
,
Pinto
,
F. J.
,
Ramos
,
A. M.
,
Gulyurtlu
,
I. K.
,
Cabrita
,
I. A.
, and
Bernardo
,
M. S.
,
2007
, “
Kinetic Evaluation of the Pyrolysis of Polyethylene Waste
,”
Energy Fuels
,
21
(
5
), pp.
2489
2498
.10.1021/ef070115p
32.
Reynolds
,
J. G.
, and
Burnham
,
A. K.
,
1997
, “
Pyrolysis Decomposition Kinetics of Cellulose-Based Materials by Constant Heating Rate Micropyrolysis
,”
Energy Fuels
,
11
(
1
), pp.
88
97
.10.1021/ef960086a
33.
Lovett
,
S.
,
Berruti
,
F.
, and
Behie
,
L. A.
,
1997
, “
Ultrapyrolytic Upgrading of Plastic Wastes and Plastics/Heavy Oil Mixtures to Valuable Light Gas Products
,”
Ind. Eng. Chem. Res.
,
36
(
11
), pp.
4436
4444
.10.1021/ie970109o
34.
Conesa
,
J. A.
,
Font
,
R.
, and
Marcilla
,
A.
,
1997
, “
Comparison Between the Pyrolysis of Two Types of Polyethylenes in a Fluidized Bed Reactor
,”
Energy Fuels
,
11
(
1
), pp.
126
136
.10.1021/ef960098w
You do not currently have access to this content.