Water shutoff is a commonly used method to mitigate the early breakthrough in horizontal wells. Gel is frequently used as an effective water shutoff agent in mature fields, especially for horizontal wells in recent years. However, the relevant water shutoff prediction model lacks the accurate physical description of the gelation phenomenon. Using the conventional model, which simply accounts for the gelation mechanisms, does not allow us to predict the horizontal wells performance correctly. In this paper, a newly coupled reservoir–wellbore model for horizontal wells gel water shutoff prediction is presented. A conventional gel simulator is used to simulate the gel injection process in the reservoir and then modified to predict the horizontal well performance after the treatment. The time-varying residual resistance factor model and viscosity model is developed to simulate the gel degradation process. Especially, the wellbore pressure drop calculation takes account for the non-Newtonian behavior during and after the gel injection. An explicit modular coupled scheme, which consists of reservoir modular and wellbore modular, is adopted to numerically predict the horizontal wells performance. The newly presented method not only simulates the gel injection process but also predict the water shut off performance in horizontal wells. A field horizontal water shutoff case prediction shows that the coupled modeling method can give satisfactory results to guide the water shutoff treatment.

References

References
1.
Bailey
,
B.
,
Crabtree
,
M.
,
Tyrie
,
J.
,
Elphick
,
J.
,
Kuchuk
,
F.
,
Romano
,
C.
, and
Roodhart
,
L.
,
2000
, “
Water Control
,”
Oilfield Rev.
,
12
(
1
), pp.
30
51
. Available at: http://www.slb.com/resources/publications/industry_articles/oilfield_review/2000/or2000spr03_watercontrol.aspx.
2.
Joseph
,
A.
, and
Ajienka
,
J.
,
2010
, “A Review of Water Shutoff Treatment Strategies in Oil Fields,” Nigeria Annual International Conference and Exhibition, Tinapa-Calabar, Nigeria, Paper No. SPE 136969.
3.
Kabir
,
A.
,
2001
,
Chemical Water & Gas Shutoff Technology: An Overview
,”
Paper SPE 72119 Presented at the SPE Asia Pacific Improved Oil Recovery Conference
, Kuala Lumpur, Malaysia.
4.
Sydansk
,
R.
, and
Seright
,
R.
,
2007
, “
When and Where Relative Permeability Modification Water-Shutoff Treatments can be Successfully Applied
,”
SPE Prod. Oper.
,
22
(
2
), pp.
236
247
.10.2118/99371-PA
5.
Gomaa
,
A. M.
, and
Nasr-El-Din
,
H. A.
,
2011
, “
Propagation of Regular HCl Acids in Carbonate Rocks: The Impact of an In Situ Gelled Acid Stage
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
023101
.10.1115/1.4004027
6.
Al-Muntasheri
,
G.
,
Sierra
,
L.
,
Garzon
,
F.
,
Lynn
,
J.
, and
Izquierdo
,
G.
,
2010
, “Water Shut-Off With Polymer Gels in a High Temperature Horizontal Gas Well: A Success Story,” SPE Improved Oil Recovery Symposium, Tulsa, OK, Paper No. SPE 129848.
7.
Verre
,
F.
,
Morrison
,
A.
,
McGarva
,
A.
, and
Blunt
,
M.
,
2007
, “Applicability of Water Shut Off Treatment for Horizontal Wells in Heavy Oil Reservoirs,” EUROPEC/EAGE Conference and Exhibition, London, U.K. Paper No. SPE 106908.
8.
Aboukshem
,
A.
,
Al Katheeri
,
A.
, and
Kenawy
,
M.
,
2008
, “Successful Application of Swell Packer Technology to Shut-Off Water Production in Horizontal Wells-Case Studies From Onshore Abu Dhabi,” Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, Paper No. SPE 117906.
9.
Augustine
,
J.
,
2002
, “An Investigation of the Economic Benefit of Inflow Control Devices on Horizontal Well Completions Using a Reservoir-Wellbore Coupled Model,” European Petroleum Conference, Aberdeen, UK, Paper No. SPE 78293.
10.
Brekke
,
K.
,
Johansen
,
T.
, and
Olufsen
,
R.
,
1993
, “A New Modular Approach to Comprehensive Simulation of Horizontal Wells,” SPE Annual Technical Conference and Exhibition, Houston, TX, Paper No. SPE 26518.
11.
Holmes
,
J.
,
Barkve
,
T.
, and
Lund
,
O.
,
1998
, “Application of a Multisegment Well Model to Simulate Flow in Advanced Wells,” European Petroleum Conference, The Hague, Netherlands, Paper No. SPE 50646.
12.
Livescu
,
S.
,
Durlofsky
,
L.
,
Aziz
,
K.
, and
Ginestra
,
J.
,
2010
, “
A Fully-Coupled Thermal Multiphase Wellbore Flow Model for Use in Reservoir Simulation
,”
J. Pet. Sci. Eng.
,
71
(
3–4
), pp.
138
146
.10.1016/j.petrol.2009.11.022
13.
Pourafshary
,
P.
,
Varavei
,
A.
,
Sepehrnoori
,
K.
, and
Podio
,
A.
,
2009
, “
A Compositional Wellbore/Reservoir Simulator to Model Multiphase Flow and Temperature Distribution
,”
J. Pet. Sci. Eng.
,
69
(
1
), pp.
40
52
.10.1016/j.petrol.2009.02.012
14.
Bekbauov
,
B. E.
,
Kaltayev
,
A.
,
Wojtanowicz
,
A. K.
, and
Panfilov
,
M.
,
2012
, “
Numerical Modeling of the Effects of Disproportionate Permeability Reduction Water-Shutoff Treatments on Water Coning
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
011101
.10.1115/1.4007913
15.
Feng
,
Q.
,
Chen
,
X.
, and
Zhang
,
G.
,
2013
, “
Experimental and Numerical Study of Gel Particles Movement and Deposition in Porous Media After Polymer Flooding
,”
Transp. Porous Media
,
97
(
1
), pp.
67
85
.10.1007/s11242-012-0110-1
16.
Sorbie
,
K.
,
Roberts
,
L.
, and
Clifford
,
P.
,
1985
, “
Calculation on the Behavior of Time-Setting Polymer Gels in Porous Media
,”
AIChE Mtg
, Paper Presented at AICHE Meeting, Houston, TX.
17.
Todd
,
B.
,
Willhite
,
G.
, and
Green
,
D.
,
1993
, “
Mathematical Model of In-Situ Gelation of Polyacrylamide by a Redox Process
,”
SPE Reservoir Eng.
,
8
(
1
), pp.
51
58
.10.2118/20215-PA
18.
Gao
,
H.
,
Chang
,
M. M.
,
Burchfield
,
T.
, and
Tham
,
M.
,
1993
, “
Permeability Modification Simulator Studies of Polymer-Gel-Treatment Initiation Time and Crossflow Effects on Waterflood Oil Recovery
,”
SPE Reservoir Eng.
,
8
(
3
), pp.
221
227
.10.2118/20216-PA
19.
Oil
,
E.
,
1996
,
User's Guide for UTCHEM-5.32 m a Three-Dimensional Chemical Flood Simulator
, Final Report, DOE/BC/14885-17, Bartlesville Project Office, U.S. Department of Energy, Washington, DC.
20.
Stars
,
C.
,
2008
,
Advanced Process and Thermal Reservoir Simulator
,
Computer Modelling Group Ltd
,
Calgary, AB, Canada
.
21.
Dang
,
C.
,
Chen,
Z.
,
Nguyen
,
N.
,
Bae
,
W.
, and
Phung
,
T. H.
,
2011
, “
Development and Optimization of Polymer Conformance Control Technology in Mature Reservoirs: Laboratory Experiments vs. Field Scale Simulation
,”
SPE Enhanced Oil Recovery Conference
.
22.
Canbolat
,
S.
, and
Parlaktuna
,
M.
,
2012
, “
Well Selection Criteria for Water Shut-Off Polymer Gel Injection in Carbonates
,”
Abu Dhabi International Petroleum Conference and Exhibition
.
23.
Dikken
,
B.
,
1990
, “
Pressure Drop in Horizontal Wells and Its Effect on Production Performance
,”
J. Pet. Technol.
,
42
(
11
), pp.
1426
1433
.10.2118/19824-PA
24.
Sorgun
,
M.
,
Ozbayoglu
,
M. E.
, and
Aydin
,
I.
,
2010
, “
Modeling and Experimental Study of Newtonian Fluid Flow in Annulus
,”
ASME J. Energy Resour. Technol.
,
132
, p.
033102
.10.1115/1.4002243
25.
Adesina
,
F. A. S.
,
Churchill
,
A.
, and
Olugbenga
,
F.
,
2011
, “
Modeling Productivity Index for Long Horizontal Well
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
033101
.10.1115/1.4004887
26.
Novy
,
R.
,
1995
, “
Pressure Drops in Horizontal Wells: When can they be Ignored?
,”
SPE Reservoir Eng.
,
10
(
1
), pp.
29
35
.10.2118/24941-PA
27.
Ozkan
,
E.
,
Sarica
,
C.
,
Haciislamoglu
,
M.
, and
Raghavan
,
R.
,
1995
, “
Effect of Conductivity on Horizontal Well Pressure Behavior
,”
SPE Adv. Technol. Ser.
,
3
(
1
), pp.
85
94
.10.2118/24683-PA
28.
Ouyang
,
L. B.
,
Arbabi
,
S.
, and
Aziz
,
K.
,
1998
, “
General Wellbore Flow Model for Horizontal, Vertical, and Slanted Well Completions
,”
SPE J.
,
3
(
2
), pp.
124
133
.10.2118/36608-PA
29.
Shi
,
H.
,
Holmes
,
J.
,
Durlofsky
,
L.
,
Aziz
,
K.
,
Diaz
,
L.
,
Alkaya
,
B.
, and
Oddie
,
G.
,
2003
, “Drift-Flux Modeling of Multiphase Flow in Wellbores,” SPE Annual Technical Conference and Exhibition, Denver, CO, Paper SPE 84228.
30.
Shi
,
H.
,
Holmes
,
J.
,
Diaz
,
L.
, and
Aziz
,
K.
,
2005
, “
Drift-Flux Parameters for Three-Phase Steady-State Flow in Wellbores,
SPEJ
10
(
2
), pp.
130
137
.10.2118/89836-PA
31.
Chang
,
M. M.
, and
Gao
,
H. W.
,
1993
,
Users Guide and Documentation Manual for “PC-Gel
,”
Simulator, National Institute for Petroleum and Energy Research
,
Bartlesville, OK
.
32.
Feng
,
Q.
,
Chen
,
X.
, and
Sun
,
M.
,
2012
, “
Study of the Multiple-Profile Control System to Enhance Oil Recovery After Polymer Flooding
,”
J. Pet. Explor. Prod. Technol.
,
2
(
3
), pp.
133
139
.10.1007/s13202-012-0029-7
33.
Jing
,
W.
,
Huiqing
,
L.
,
Chaofeng
,
W.
, and
Haiyang
,
P.
,
2011
, “
Discussions on Some Problems About the Mathematical Model of Polymer Flooding
,”
Acta Petrolei Sin.
,
32
(
5
), pp.
857
861
.10.7623/syxb201105018
34.
Dodge
,
D.
, and
Metzner
,
A.
,
1959
, “
Turbulent Flow of Non‐Newtonian Systems
,”
AIChE J.
,
5
(
2
), pp.
189
204
.10.1002/aic.690050214
35.
Cao
,
H.
,
2002
, “
Development of Techniques for General Purpose Simulators
,” Ph.D. thesis, Stanford University, Stanford, CA.
36.
Kabir
,
A.
, and
Sanchez Soto
,
G.
,
2009
, "Accurate Inflow Profile Prediction of Horizontal Wells Through Coupling of a Reservoir and a Wellbore Simulator," SPE Reservoir Simulation Symposium, The Woodlands, TX, Paper SPE 119095.
37.
GeoQuest
,
S.
,
2010
,
ECLIPSE Reservoir Simulator, Manual and Technical Description
, ECLIPSE Technical Description, Version 2010.1. 2010. Schlumberger,
Houston, TX
.
38.
Jia
,
L.
,
Linsong
,
C.
,
Shijun
,
H.
, and
Lei
,
W.
,
2013
, “
Numerical Simulation of Water Shut-Off of Horizontal Well of Tahe Oilfield
,”
Spec. Oil Gas Reservoirs
,
20
(
1
), pp. 135–138 (in Chinese).
39.
Nunes
,
M.
,
Bedrikovetski
,
P.
,
Newbery
,
B.
,
Paiva
,
R.
,
Furtado
,
C.
, and
de Souza
,
A.
,
2010
, “
Theoretical Definition of Formation Damage Zone With Applications to Well Stimulation
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
033101
.10.1115/1.4001800
You do not currently have access to this content.