The effects that various charged electrodes, and associated electric fields, have on lifted propane flames have been investigated. Two electrodes were used to provide an electric field with potentials ranging from 0 to 11,000 V. The primary electrode was around the flame and the secondary electrode was the fuel nozzle. Electrode polarity and primary electrode location with various flame field locations (near, mid, far) were varied, resulting in a variety of flame behavior. Results show that the body force resultant from the bulk flow of formed ions, from a positively charged fuel nozzle, and grounded ring electrode, will increase flame liftoff height and, eventually, cause blowout. However, for the opposite polarity (positively charged ring electrode and grounded fuel nozzle), the flame progresses toward reattachment with increasing potentials. Observing the narrow window of flame blowout or reattachment (varying with polarity), it was observed that the lifted flame height fluctuations were increased with the presence of the grounded ring electrode, but reduced when the polarity was shifted to positive configuration (positively charged primary electrode). Flame hysteresis was observed when the ring electrode was positively charged and it was found that the hysteresis regime increased when the potential of the ring electrode was increased to 1500 V but had little changes at lower potentials. While the ring electrode was positively charged, a distinct hole was observed in the center of the flame. Several images are presented that show these flame holes that are present when the electrodes are charged.

References

References
1.
Lee
,
S. M.
,
Park
,
C. S.
,
Cha
,
M. S.
, and
Chung
,
S. H.
,
2005
, “
Effect of Electric Fields on the Liftoff of Nonpremixed Turbulent Jet Flames
,”
IEEE Trans. Plasma Sci.
,
33
(
5
), pp.
1703
1709
.10.1109/TPS.2005.845266
2.
Weinberg
,
F. J.
,
Carleton
,
F. B.
, and
Dunn-Rankin
,
D.
,
2008
, “
Electric Field-Controlled Mesoscale Burners
,”
Combust. Flame
,
152
, pp.
186
193
.10.1016/j.combustflame.2007.07.007
3.
Tretyakov
,
P. K.
,
Tupikin
,
A. V.
,
Denisova
,
N. V.
,
Ganeev
,
O. V.
,
Zamashchikov
,
V. V.
, and
Kozorezov
,
Y. S.
,
2012
, “
Laminar Propane-Air Flame in a Weak Electric Field
,”
Combust., Explos. Shock Waves
,
48
(
2
), pp.
130
135
.10.1134/S0010508212020025
4.
Schmidt
,
J. B.
, and
Ganguly
,
B. N.
,
2013
, “
Effect of Pulsed, Sub-Breakdown Applied Electric Field on Propane/Air Flame Through Simultaneous OH/Acetone PLIF
,”
Combust. Flame
,
160
(
12
), pp.
2820
2826
.10.1016/j.combustflame.2013.06.031
5.
Yagodnikov
,
D. A.
,
1998
, “
Effect of an Electric Field on the Stabilization of a Turbulent Propane-Air Flame
,”
Combust., Explos. Shock Waves
,
34
(
1
), pp.
16
19
.10.1007/BF02671810
6.
Kim
,
M. K.
,
Ryu
,
S. K.
,
Won
,
S. H.
, and
Chung
,
S. H.
,
2010
, “
Electric Fields Effect on Liftoff and Blowoff of Nonpremixed Laminar Jet Flames in a Coflow
,”
Combust. Flame
,
157
(
1
), pp.
17
24
.10.1016/j.combustflame.2009.10.002
7.
Garanin
,
A. F.
,
Tret'yakov
,
P. K.
, and
Tupikin
,
A. V.
,
2008
, “
Effect of Constant and Pulsed-Periodic Electric Fields on Combustion of a Propane-Air Mixture
,”
Combust., Explos. Shock Waves
,
44
(
1
), pp.
18
21
.10.1007/s10573-008-0003-3
8.
Fialkov
,
A. B.
,
1997
, “
Investigation on Ions in Flames
,”
Prog. Energy Combust. Sci.
,
23
(
5–6
), pp.
399
528
.10.1016/S0360-1285(97)00016-6
9.
Pitts
,
W. M.
,
1988
, “
Assessment of Theories for the Behavior and Blowout of Lifted Turbulent Jet Diffusion Flames
,”
Proc. Combust. Inst.
,
22
, pp.
427
509
.10.1016/S0082-0784(89)80090-6
10.
Lyons
,
K. M.
,
2007
, “
Toward an Understanding of the Stabilization Mechanisms of Lifted Turbulent Jet Flames: Experiments
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
211
231
.10.1016/j.pecs.2006.11.001
11.
Peters
,
N. H.
, and
Williams
,
F. A.
,
1983
, “
Liftoff Characteristics of Turbulent Jet Diffusion Flames
,”
AIAA J.
,
21
(
3
), pp.
423
429
.10.2514/3.8089
12.
Kalghatgi
,
G. T.
,
1984
, “
Lift-Off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air
,”
Combust. Sci. Technol.
,
41
(
1–2
), pp.
17
29
.10.1080/00102208408923819
13.
Vanquickenborne
,
L.
, and
Tiggelen
,
A. V.
,
1966
, “
The Stabilization Mechanism of Lifted Diffusion Flames
,”
Combust. Flame
,
10
(
1
), pp.
59
69
.10.1016/0010-2180(66)90028-9
14.
Buckmaster
,
J. D.
,
2002
, “
Edge-Flames
,”
Prog. Energy Combust. Sci.
,
28
(
5
), pp.
435
475
.10.1016/S0360-1285(02)00008-4
15.
Broadwell
,
J. E.
,
Dahm
,
W. J. A.
, and
Mungal
M. G.
,
1984
, “
Blowout of Turbulent Diffusion Flames
,”
Proc. Combust. Inst.
,
20
(
1
), pp.
303
310
.10.1016/S0082-0784(85)80515-4
16.
Wu
,
C. Y.
,
Chao
,
Y. C.
,
Cheng
,
T. S.
,
Li
,
Y. H.
,
Lee
,
K. Y.
, and
Yuan
,
T.
,
2006
, “
The Blowout Mechanism of Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
145
(
3
), pp.
481
494
.10.1016/j.combustflame.2006.01.004
17.
Moore
,
N. J.
,
Terry
,
S. D.
, and
Lyons
,
K. M.
,
2011
, “
Flame Hysteresis Effects in Methane Jet Flames in Air-Coflow
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), pp.
319
324
.10.1115/1.4003806
18.
Terry
,
S. D.
, and
Lyons
,
K. M.
,
2006
, “
Turbulent Lifted Flames in the Hysteresis Regime and the Effects of Coflow
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
319
324
.10.1115/1.2358147
19.
Tummers
,
M. J.
,
Hubner
,
A. W.
,
Veen van
,
E. H.
,
Hanjalic
,
K.
, and
van der Meer
,
T. H.
,
2009
, “
Hysteresis and Transition in Swirling Nonpremixed Flames
,”
Combust. Flame
,
156
(
2
), pp.
447
459
.10.1016/j.combustflame.2008.10.027
20.
Gollahalli
,
S. R.
,
Savas
,
O.
,
Huang
,
R. F.
, and
Azara
,
J. L. R.
,
1988
, “
Structure of Attached and Lifted Gas Jet Flames in Hysteresis Region
,”
Proc. Combust. Inst.
,
21
(
1
), pp.
1463
1471
.10.1016/S0082-0784(88)80379-5
21.
Leung
,
T.
, and
Wierzba
,
I.
,
2009
, “
The Effect of Co-Flow Stream Velocity on Turbulent Non-Premixed Jet Flame Stability
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1671
1678
.10.1016/j.proci.2008.06.071
22.
Karbasi
,
M.
, and
Wierzba
,
I.
,
1998
, “
Prediction and Validation of Blowout Limits of Co-Flowing Jet Diffusion Flames—Effect of Dilution
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
167
171
.10.1115/1.2795029
23.
Papanikolaou
,
N.
, and
Wierzba
,
I.
,
1996
, “
Effect of Burner Geometry on the Blowout Limits of Jet Diffusion Flames in a Co-Flowing Oxidizing Stream
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
134
139
.10.1115/1.2792704
24.
Hutchins
,
A. R.
,
Kribs
,
J. D.
,
Muncey
,
R. D.
, and
Lyons
,
K. M.
,
2013
, “
Assessment of Stabilization Mechanisms of Confined, Turbulent, Lifted Jet Flames: Effects of Ambient Coflow
,”
ASME Power Conference Proceedings
, Boston, MA.
25.
Saeys
,
L. J.
,
Zumer
,
M.
, and
Dealy
,
J. M.
,
1971
, “
Criteria for Recirculation in Confined Jet Flames
,”
Combust. Flame
,
17
(
3
), pp.
367
377
.10.1016/S0010-2180(71)80059-7
26.
Cha
,
M. S.
, and
Chung
,
S. H.
,
1996
, “
Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
121
128
.10.1016/S0082-0784(96)80208-6
27.
Hutchins
,
A. R.
,
Kribs
,
J. D.
,
Muncey
,
R. D.
,
Reach
,
W. A.
, and
Lyons
,
K. M.
,
2013
, “
Experimental Observations of Nitrogen Diluted Ethylene and Methane Jet Flames
,”
ASME Summer Heat Transfer Conference Proceedings
, Minneapolis, MN.
28.
Kribs
,
J. D.
,
Moore
,
N. J.
,
Hasan
,
T. S.
, and
Lyons
,
K. M.
,
2013
, “
Nitrogen-Diluted Methane Flames in the Near- and Far-Field
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), pp.
1
10
.10.1115/1.4024315
29.
Donnerhack
,
S.
, and
Peters
,
N. H.
,
1984
, “
Stabilization Heights in Lifted Methane-Air Jet Diffusion Flames Diluted With Nitrogen
,”
Combust. Sci. Technol.
,
41
(
1–2
), pp.
101
108
.10.1080/00102208408923825
30.
Wilson
,
D. A.
, and
Lyons
,
K. M.
,
2009
, “
On Diluted-Fuel Combustion Issues in Burning Biogas Surrogates
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), pp.
1
9
.10.1115/1.4000152
31.
Papanikolaou
,
N.
, and
Wierzba
,
I.
,
1997
, “
The Effects of Burner Geometry and Fuel Composition on the Stability of a Jet Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
265
270
.10.1115/1.2795000
32.
Schefer
,
R. W.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.10.1016/S0360-3199(02)00199-4
33.
Kribs
,
J. D.
,
Hutchins
,
A. R.
,
Reach
,
W. A.
,
Hasan
,
T. S.
, and
Lyons
,
K. M.
,
2013
, “
Effects of Hydrogen Enrichment of the Reattachment and Hysteresis of Lifted Methane Flames
,”
ASME Power Conference Proceedings
, Boston, MA.
34.
Bak
,
M. S.
,
Im
,
S. K.
,
Mungal
,
M. G.
, and
Cappelli
,
M. A.
,
2013
, “
Studies on the Stability Limit Extension of Premixed and Jet Diffusion Flames of Methane, Ethane, and Propane Using Nanosecond Repetitive Pulsed Discharge Plasmas
,”
Combust. Flame
,
160
(
11
), pp.
2396
2403
.10.1016/j.combustflame.2013.05.023
35.
Weinberg
,
F. J.
, and
Carleton
,
F. B.
,
1987
, “
Electric Field-Induced Flame Convection in the Absence of Gravity
,”
Nature
,
330
, pp.
635
636
.10.1038/330433a0
36.
Rickard
,
M.
,
Dunn-Rankin
,
D.
,
Weinberg
,
F. J.
, and
Carleton
,
F. B.
,
2005
, “
Characterization of Ionic Wind Velocity
,”
J. Electrostat.
,
63
, pp.
711
716
.10.1016/j.elstat.2005.03.033
37.
Robinson
,
M.
,
1961
, “
Movement of Air in the Electric Wind of the Corona Discharge
,”
Trans. Am. Inst. Electr. Eng.
,
80
, pp.
143
150
.
38.
Nayagam
,
V.
,
Balasubramaniam
,
R.
, and
Ronney
,
P. D.
,
1999
, “
Diffusion Flame-Holes
,”
Combust. Theory Model.
,
3
, pp.
727
742
.10.1088/1364-7830/3/4/307
39.
Shekarchi
,
S.
,
Savas
,
O.
, and
Gollahalli
,
S. R.
,
1988
, “
Structure of a Split Gas Flame
,”
Combust. Flame
,
73
(
3
), pp.
221
232
.10.1016/0010-2180(88)90020-X
You do not currently have access to this content.