Local entropy generation in a turbulent nonpremixed jet flame (Sandia Flame D) is predicted using large eddy simulation (LES) with inclusion of entropy transport. The filtered form of entropy transport equation contains several unclosed source terms which represent irreversibilities due to viscous dissipation, heat conduction, mass diffusion, and chemical reaction. The subgrid scale (SGS) closure is accounted for by the entropy filtered density function (En-FDF) methodology to include complete statistical information about SGS variation of scalars and entropy. The En-FDF provides closed forms for the chemical reaction effects. The methodology is applied for LES of Sandia Flame D and predictions are validated against experimental data. Entropy statistics are shown to compare favorably with the data. All individual irreversible processes in this flame are predicted and analyzed. It is shown that heat conduction and chemical reaction are the main sources of entropy generation in this flame.

References

References
1.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.10.1063/1.362674
2.
Som
,
S. K.
, and
Datta
,
A.
,
2008
, “
Thermodynamic Irreversibilities and Exergy Balance in Combustion Processes
,”
Prog. Energy Combust. Sci.
,
34
(
3
), pp.
351
376
.10.1016/j.pecs.2007.09.001
3.
Bejan
,
A.
,
1982
,
Entropy Generation through Heat and Fluid Flow
,
Wiley
,
New York
.
4.
Rezac
,
P.
, and
Metghalchi
,
H.
,
2004
, “
A Brief Note on the Historical Evolution and Present State of Exergy Analysis
,”
Int. J. Exergy
,
1
(
4
), pp.
426
437
.10.1504/IJEX.2004.005787
5.
Dewulf
,
J.
,
Van Langenhove
,
H.
,
Muys
,
B.
,
Bruers
,
S.
,
Bakshi
,
B. R.
,
Grubb
,
G. F.
,
Paulus
,
D. M.
, and
Sciubba
,
E.
,
2008
, “
Exergy: Its Potential and Limitations in Environmental Science And Technology
,”
Environ. Sci. Technol.
,
42
(
7
), pp.
2221
2232
.10.1021/es071719a
6.
Gouy
,
G.
,
1889
, “
About Available Energy
,”
J. Phys. II
,
8
, pp.
501
518
.
7.
Stodola
,
A.
,
1910
,
Steam and Gas Turbines
,
McGraw-Hill
,
New York
.
8.
Jubeh
,
N. M.
,
2005
, “
Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle With Isothermal Heat Addition
,”
Entropy
,
7
(
3
), pp.
172
187
.10.3390/e7030172
9.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2006
, “
Second-Law Analyses Applied to Internal Combustion Engines Operation
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
2
47
.10.1016/j.pecs.2005.10.001
10.
Rakopoulos
,
C. D.
, and
Michos
,
C. N.
,
2009
, “
Generation of Combustion Irreversibilities in a Spark Ignition Engine Under Biogas-Hydrogen Mixtures Fueling
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4422
4437
.10.1016/j.ijhydene.2009.02.087
11.
Gyftopoulos
,
E. P.
, and
Beretta
,
G. P.
,
1993
, “
Entropy Generation Rate in a Chemically Reacting System
,”
J. Energy Res. Technol.
,
115
, pp.
208
212
.10.1115/1.2905995
12.
Sezer
,
I.
,
Altin
,
I.
, and
Bilgin
,
A.
,
2009
, “
Exergetic Analysis of Using Oxygenated Fuels in Spark-Ignition (SI) Engines
,”
Energy Fuels
,
23
(
4
), pp.
1801
1807
.10.1021/ef8002608
13.
Liu
,
G.-J.
,
Li
,
Z.
,
Wang
,
M.-H.
, and
Ni
,
W.-D.
,
2010
, “
Energy Savings by Co-Production: A Methanol/Electricity Case Study
,”
Appl. Energy
,
87
(
9
), pp.
2854
2859
.10.1016/j.apenergy.2009.08.036
14.
Ugarte
,
S.
, and
Metghalchi
,
M.
,
2005
, “
Evolution of Adiabatic Availability and Its Depletion Through Irreversible Processes
,”
Int. J. Exergy
,
2
(
2
), pp.
3
13
.10.1504/IJEX.2005.006983
15.
Chavannavar
,
P.
, and
Caton
,
J.
,
2006
, “
Destruction of Availability (exergy) Due to Combustion Processes: A Parametric Study
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
7
), pp.
655
668
.10.1243/09576509JPE267
16.
Klausner
,
J. F.
,
Li
,
Y.
,
Darwish
,
M.
, and
Mei
,
R.
,
2004
, “
Innovative Diffusion Driven Desalination Process
,”
ASME J. Energy Res. Technol.
,
126
, pp.
219
225
.10.1115/1.1786927
17.
Datta
,
A.
, and
Som
,
S.
,
1999
, “
Energy and Exergy Balance in a Gas Turbine Combustor
,”
Proc. Inst. Mech. Eng., Part A
,
213
(
1
), pp.
23
32
.10.1243/0957650991537400
18.
Hutchins
,
T. E.
, and
Metghalchi
,
M.
,
2003
, “
Energy and Exergy Analyses of the Pulse Detonation Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
1075
1080
.10.1115/1.1610015
19.
Stanciu
,
D.
,
Marinescu
,
M.
, and
Isvoranu
,
D.
,
2000
, “
Second Law Analysis of the Turbulent Flat Plate Boundary Layer
,”
Int. J. Appl. Thermodyn.
,
3
(
3
), pp.
99
104
.
20.
Teng
,
H.
,
Kinoshita
,
C. M.
,
Masutani
,
S. M.
, and
Zhou
,
J.
,
1998
, “
Entropy Generation in Multicomponent Reacting Flows
,”
ASME J. Energy Res. Technol.
,
120
(
3
), pp.
226
232
.10.1115/1.2795040
21.
Arpaci
,
V. S.
, and
Selamet
,
A.
,
1988
, “
Entropy Production in Flames
,”
Combust. Flame
,
73
(
3
), pp.
251
259
.10.1016/0010-2180(88)90022-3
22.
Datta
,
A.
,
2000
, “
Entropy Generation in a Confined Laminar Diffusion Flame
,”
Combust. Sci. Technol.
,
159
(
1
), pp.
39
56
.10.1080/00102200008935776
23.
Nishida
,
K.
,
Takagi
,
T.
, and
Kinoshita
,
S.
,
2002
, “
Analysis of Entropy Generation and Exergy Loss During Combustion
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
869
874
.10.1016/S1540-7489(02)80111-0
24.
Briones
,
A. M.
,
Mukhopadhyay
,
A.
, and
Aggarwal
,
S. K.
,
2009
, “
Analysis of Entropy Generation in Hydrogen-Enriched Methane-Air Propagating Triple Flames
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1074
1083
.10.1016/j.ijhydene.2008.09.103
25.
Li
,
Z. W.
,
Chou
,
S. K.
,
Shu
,
C.
, and
Yang
,
W. M.
,
2005
, “
Entropy Generation During Microcombustion
,”
J. Appl. Phys.
,
97
(
8
), p. 084914.10.1063/1.1876573
26.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
, and
Khan
,
M.
,
2006
, “
Entropy Generation in Laminar Jet: Effect of Velocity Profiles At Nozzle Exit
,”
Heat Mass Transfer
,
42
(
9
), pp.
771
777
.10.1007/s00231-005-0056-8
27.
Narusawa
,
U.
,
1999
, “
The Second-Law Analysis of Convective Pattern Change in a Rectangular Cavity
,”
J. Fluid Mech.
,
392
, pp.
361
377
.10.1017/S0022112099005595
28.
Sciacovelli
,
A.
, and
Verda
,
V.
,
2010
, “
Entropy Generation Minimization in a Tubular Solid Oxide Fuel Cell
,”
ASME J. Energy Res. Technol.
,
132
, p. 012601.10.1115/1.4001063
29.
Stanciu
,
D.
,
Marinescu
,
M.
, and
Dobrovicescu
,
A.
,
2007
, “
The Influence of Swirl Angle on the Irreversibilities in Turbulent Diffusion Flames
,”
Int. J. Thermodyn.
,
10
(
4
), pp.
143
153
.
30.
Stanciu
,
D.
,
Isvoranu
,
D.
,
Marinescu
,
M.
, and
Gogus
,
Y.
,
2001
, “
Second Law Analysis of Diffusion Flames
,”
Int. J. Appl. Thermodyn.
,
4
(
1
), pp.
1
18
.
31.
Lior
,
N.
,
Sarmiento-Darkin
,
W.
, and
Al-Sharqawi
,
H. S.
,
2006
, “
The Exergy Fields in Transport Processes: Their Calculation and Use
,”
Energy
,
31
(
5
), pp.
553
578
.10.1016/j.energy.2005.05.009
32.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Local Entropy Production in Turbulent Shear Flows: A Tool for Evaluating Heat Transfer Performance
,”
J. Therm. Sci.
,
15
(
2
), pp.
159
167
.10.1007/s11630-006-0159-7
33.
Yapici
,
H.
,
Kayataş
,
N.
,
Albayrak
,
B.
, and
Baştürk
,
G.
,
2005
, “
Numerical Calculation of Local Entropy Generation in a Methane-Air Burner
,”
Energy Convers. Manage.
,
46
(
11–12
), pp.
1885
1919
.10.1016/j.enconman.2004.09.007
34.
Yapici
,
H.
,
Kayataş
,
N.
,
Albayrak
,
B.
, and
Baştürk
,
G.
,
2005
, “
Numerical Study on Local Entropy Generation in a Burner Fueled With Various Fuels
,”
Heat Mass Transfer
,
41
(
6
), pp.
519
534
.10.1007/s00231-004-0574-9
35.
Iandoli
,
C. L.
, and
Sciubba
,
E.
,
2010
, “
3-D Numerical Calculation of the Local Entropy Generation Rates in a Radial Compressor Stage
,”
Int. J. Thermodyn.
,
8
(
2
), pp.
83
94
.
36.
Datta
,
A.
,
2005
, “
Effects of Gravity on Structure and Entropy Generation of Confined Laminar Diffusion Flames
,”
Int. J. Therm. Sci.
,
44
(
5
), pp.
429
440
.10.1016/j.ijthermalsci.2004.10.003
37.
Raghavan
,
V.
,
Gogos
,
G.
,
Babu
,
V.
, and
Sundararajan
,
T.
,
2007
, “
Entropy Generation During the Quasi-Steady Burning of Spherical Fuel Particles
,”
Int. J. Therm. Sci.
,
46
(
6
), pp.
589
604
.10.1016/j.ijthermalsci.2006.07.006
38.
Sheikhi
,
M. R. H.
,
Safari
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Large Eddy Simulation for Local Entropy Generation Analysis of Turbulent Flows
,”
J. Energy Res. Technol.
,
134
(
4
), p. 041603.10.1115/1.4007482
39.
Yilbas
,
B. S.
,
2002
, “
Entropy Production During Laser Picosecond Heating of Copper
,”
J. Energy Res. Technol.
,
124
, pp.
204
213
.10.1115/1.1488173
40.
Call
,
F. W.
,
1998
, “
Dispersion—An Entropy Generator of Diffusion
,”
J. Energy Res. Technol.
,
120
, pp.
149
153
.10.1115/1.2795026
41.
Chen
,
S.
,
Li
,
J.
,
Han
,
H.
,
Liu
,
Z.
, and
Zheng
,
C.
,
2010
, “
Effects of Hydrogen Addition on Entropy Generation in Ultra-Lean Counter-Flow Methane-Air Premixed Combustion
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3891
3902
.10.1016/j.ijhydene.2010.01.120
42.
Okong'o
,
N.
, and
Bellan
,
J.
,
2000
, “
Entropy Production of Emerging Turbulent Scales In a Temporal Supercritical n-Heptane/Nitrogen Three Dimensional Mixing Layer
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
467
504
.10.1016/S0082-0784(00)80248-9
43.
Okong'o
,
N.
, and
Bellan
,
J.
,
2002
, “
Direct Numerical Simulation of a Transitional Supercritical Binary Mixing Layer: Heptane and Nitrogen
,”
J. Fluid Mech.
,
464
, pp.
1
34
.10.1017/S0022112002008480
44.
Farran
,
R.
, and
Chakraborty
,
N.
,
2013
, “
A Direct Numerical Simulation-Based Analysis of Entropy Generation in Turbulent Premixed Flames
,”
Entropy
,
15
(
5
), pp.
1540
1566
.10.3390/e15051540
45.
Safari
,
M.
,
Sheikhi
,
M. R. H.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2010
, “
Entropy Transport Equation in Large Eddy Simulation for Exergy Analysis of Turbulent Combustion Systems
,”
Entropy
,
12
(
3
), pp.
434
444
.10.3390/e12030434
46.
Kuo
,
K. K.
, and
Acharya
,
R.
,
2012
,
Fundamentals of Turbulent and Multi-Phase Combustion
,
Wiley
,
Hoboken, NJ
.
47.
Pope
,
S. B.
,
2013
, “
Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1
31
.10.1016/j.proci.2012.09.009
48.
Poinsot
,
T.
, and
Veynante
,
D.
,
2011
,
Theoretical and Numerical Combustion
,
3rd ed.
,
R. T.
Edwards
, ed.,
Inc.
,
Philadelphia, PA
.
49.
Echekki
,
T.
, and
Mastorakos
,
E.
,
2011
,
Turbulent Combustion Modeling: Advances, New Trends and Perspectives
,
Springer
,
New York, NY
.
50.
Janicka
,
J.
, and
Sadiki
,
A.
,
2005
, “
Large Eddy Simulation of Turbulent Combustion Systems
,”
Proc. Combust. Inst.
,
30
, pp.
537
547
.10.1016/j.proci.2004.08.279
51.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
453
482
.10.1146/annurev.fluid.38.050304.092133
52.
Givi
,
P.
,
2006
, “
Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion
,”
AIAA J.
,
44
(
1
), pp.
16
23
.10.2514/1.15514
53.
Sheikhi
,
M. R. H.
,
Givi
,
P.
, and
Pope
,
S. B.
,
2009
, “
Frequency-Velocity-Scalar Filtered Mass Density Function For Large Eddy Simulation of Turbulent Flows
,”
Phys. Fluids
,
21
(
7
), p. 075102.10.1063/1.3153907
54.
Sheikhi
,
M. R. H.
,
Givi
,
P.
, and
Pope
,
S. B.
,
2007
, “
Velocity-Scalar Filtered Mass Density Function For Large Eddy Simulation of Turbulent Reacting Flows
,”
Phys. Fluids
,
19
(
9
), p. 095106.10.1063/1.2768953
55.
Ansari
,
N.
,
Jaberi
,
F. A.
,
Sheikhi
,
M. R. H.
, and
Givi
,
P.
,
2011
, “
Filtered Density Function as a Modern CFD tool
,”
Engineering Applications of CFD
,
R. S.
Maher
, ed., Vol.
1
of Fluid Mechanics and Its Applications, International Energy and Environment Foundation, Al-Najaf, Iraq, pp.
1
22
.
56.
Sheikhi
,
M. R. H.
,
Drozda
,
T. G.
,
Givi
,
P.
, and
Pope
,
S. B.
,
2003
, “
Velocity-Scalar Filtered Density Function For Large Eddy Simulation of Turbulent Flows
,”
Phys. Fluids
,
15
(
8
), pp.
2321
2337
.10.1063/1.1584678
57.
Drozda
,
T. G.
,
Sheikhi
,
M. R. H.
,
Madnia
,
C. K.
, and
Givi
,
P.
,
2007
, “
Developments in Formulation and Application of the Filtered Density Function
,”
Flow Turbul. Combust.
,
78
, pp.
35
67
.10.1007/s10494-006-9052-4
58.
Sheikhi
,
M. R. H.
,
Drozda
,
T. G.
,
Givi
,
P.
,
Jaberi
,
F. A.
, and
Pope
,
S. B.
,
2005
, “
Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia flame D)
,”
Proc. Combust. Inst.
,
30
, pp.
549
556
.10.1016/j.proci.2004.08.028
59.
Yilmaz
,
S. L.
,
Nik
,
M. B.
,
Sheikhi
,
M. R. H.
,
Strakey
,
P. A.
, and
Givi
,
P.
,
2010
, “
An Irregularly Portioned Lagrangian Monte Carlo Method For Turbulent Flow Simulation
,”
J. Sci. Comput.
,
47
(
1
), pp.
109
125
.10.1007/s10915-010-9424-8
60.
Nik
,
M. B.
,
Yilmaz
,
S. L.
,
Givi
,
P.
,
Sheikhi
,
M. R. H.
, and
Pope
,
S. B.
,
2010
, “
Simulation of Sandia Flame D Using Velocity-Scalar Filtered Density Function
,”
AIAA J.
,
48
(
7
), pp.
1513
1522
.10.2514/1.J050154
61.
Ansari
,
N.
,
Goldin
,
G. M.
,
Sheikhi
,
M. R. H.
, and
Givi
,
P.
,
2011
, “
Filtered Density Function Simulator on Unstructured Meshes
,”
J. Comput. Phys.
,
230
(
19
), pp.
7132
7150
.10.1016/j.jcp.2011.05.015
62.
Nik
,
M.
,
Yilmaz
,
S.
,
Sheikhi
,
M. R. H.
, and
Givi
,
P.
,
2010
, “
Grid Resolution Effects on VSFMDF/LES
,”
Flow Turbul. Combust.
,
85
(
3–4
), pp.
677
688
.10.1007/s10494-010-9272-5
63.
Ansari
,
N.
,
Pisciuneri
,
P. H.
,
Strakey
,
P. A.
, and
Givi
,
P.
,
2012
, “
Scalar-Filtered Mass-Density-Function Simulation of Swirling Reacting Flows on Unstructured Grids
,”
AIAA J.
,
50
(
11
), pp.
2476
2482
.10.2514/1.J051671
64.
James
,
S.
,
Zhu
,
J.
, and
Anand
,
M. S.
,
2007
, “
Large Eddy Simulations of Turbulent Flames Using the Filtered Density Function Model
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
1737
1745
.10.1016/j.proci.2006.07.160
65.
Chen
,
J. Y.
,
2007
, “
A Eulerian PDF Scheme for LES of Nonpremixed Turbulent Combustion With Second-Order Accurate Mixture Fraction
,”
Combust. Theory Model.
,
11
(
5
), pp.
675
695
.10.1080/13647830601091723
66.
McDermott
,
R.
, and
Pope
,
S. B.
,
2007
, “
A Particle Formulation for Treating Differential Diffusion in Filtered Density Function Methods
,”
J. Comput. Phys.
,
226
, pp.
947
993
.10.1016/j.jcp.2007.05.006
67.
Raman
,
V.
, and
Pitsch
,
H.
,
2007
, “
A Consistent LES/Filtered-Density Function Formulation for the Simulation of Turbulent Flames With Detailed Chemistry
,”
Proc. Combust. Inst.
,
31
, pp.
1711
1719
.10.1016/j.proci.2006.07.152
68.
Yaldizli
,
M.
,
Mehravaran
,
K.
, and
Jaberi
,
F. A.
,
2010
, “
Large-Eddy Simulations of Turbulent Methane Jet Flames With Filtered Mass Density Function
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2551
2562
.10.1016/j.ijheatmasstransfer.2009.12.061
69.
Drozda
,
T. G.
,
Wang
,
G.
,
Sankaran
,
V.
,
Mayo
,
J. R.
,
Oefelein
,
J. C.
, and
Barlow
,
R. S.
,
2008
, “
Scalar Filtered Mass Density Functions in Nonpremixed Turbulent Jet Flames
,”
Combust. Flame
,
155
(
1–2
), pp.
54
69
.10.1016/j.combustflame.2008.06.012
70.
Zhao
,
W.
,
Zhang
,
C.
, and
Chen
,
C.
,
2011
, “
Large Eddy Simulation of Bluff-Body Stabilized Flames Using a Multi-Environment Filtered Density Function Model
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1347
1353
.10.1016/j.proci.2010.07.005
71.
van Vliet
,
E.
,
Derksen
,
J. J.
, and
van den Akker
,
H. E. A.
,
2005
, “
Turbulent Mixing in a Tubular Reactor: Assessment of an FDF/LES Approach
,”
AIChE J.
,
51
(
3
), pp.
725
739
.10.1002/aic.10365
72.
Afshari
,
A.
,
Jaberi
,
F. A.
, and
Shih
,
T.-H.
,
2008
, “
Large-Eddy Simulation of Turbulent Flows in an Axisymmetric Dump Combustor
,”
AIAA J.
,
46
(
7
), pp.
1576
1592
.10.2514/1.25467
73.
Williams
,
F. A.
,
1985
,
Combustion Theory
,
2nd ed.
,
The Benjamin/Cummings Publishing Company
,
Menlo Park, CA
.
74.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
75.
Sagaut
,
P.
,
2005
,
Large Eddy Simulation for Incompressible Flows
,
Springer-Verlag
,
New York
.
76.
Colucci
,
P. J.
,
Jaberi
,
F. A.
,
Givi
,
P.
, and
Pope
,
S. B.
,
1998
, “
Filtered Density Function For Large Eddy Simulation of Turbulent Reacting Flows
,”
Phys. Fluids
,
10
(
2
), pp.
499
515
.10.1063/1.869537
77.
Jaberi
,
F. A.
,
Colucci
,
P. J.
,
James
,
S.
,
Givi
,
P.
, and
Pope
,
S. B.
,
1999
, “
Filtered Mass Density Function For Large Eddy Simulation of Turbulent Reacting Flows
,”
J. Fluid Mech.
,
401
, pp.
85
121
.10.1017/S0022112099006643
78.
Kloeden
,
P. E.
,
Platen
,
E.
, and
Schurz
,
H.
,
1997
,
Numerical Solution of Stochastic Differential Equations through Computer Experiments
, corrected 2nd printing ed.,
Springer-Verlag
,
New York
.
79.
Kennedy
,
C. A.
, and
Carpenter
,
M. H.
,
1994
,“
Several New Numerical Methods for Compressible Shear-Layer Simulations
,”
Appl. Numer. Math.
,
14
, pp.
397
433
.10.1016/0168-9274(94)00004-2
80.
Barlow
,
R. S.
,
2011
, Sandia National Laboratories, TNF Workshop website. http://www.ca.sandia.gov/TNF
81.
Frank
,
J. H.
, and
Barlow
,
R. S.
,
1998
, “
Simultaneous Rayleigh, Raman, and LIF Measurements in Turbulent Premixed Methane-Air Flames
,”
Proc. Combust. Inst.
,
27
, pp.
759
766
.10.1016/S0082-0784(98)80510-9
82.
Xu
,
J.
, and
Pope
,
S. B.
,
2000
, “
PDF Calculations of Turbulent Nonpremixed Flames With Local Extinction
,”
Combust. Flame
,
123
, pp.
281
307
.10.1016/S0010-2180(00)00155-3
83.
Pitsch
,
H.
, and
Steiner
,
H.
,
2000
, “
Large Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia flame D)
,”
Phys. Fluids
,
12
(
10
), pp.
2541
2554
.10.1063/1.1288493
84.
Vreman
,
A. W.
,
Albrecht
,
B. A.
,
van Oijen
,
J. A.
,
de Goey
,
L. P. H.
, and
Bastiaans
,
R. J. M.
,
2008
, “
Premixed and Nonpremixed Generated Manifolds in Large-Eddy Simulation of Sandia Flame D and F
,”
Combust. Flame
,
153
(
3
), pp.
394
416
.10.1016/j.combustflame.2008.01.009
85.
Cai
,
J.
,
Wang
,
D.
,
Tong
,
C.
,
Barlow
,
R. S.
, and
Karpetis
,
A. N.
,
2009
, “
Investigation of Subgrid-Scale Mixing of Mixture Fraction and Temperature in Turbulent Partially Premixed Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1517
1525
.10.1016/j.proci.2008.05.026
86.
Schneider
,
C.
,
Dreizler
,
A.
,
Janicka
,
J.
, and
Hassel
,
E. P.
,
2003
, “
Flow Field Measurements of Stable and Locally extinguishing Hydrocarbon-Fuelled Jet Flames
,”
Combust. Flame
,
135
(
1
), pp.
185
190
.10.1016/S0010-2180(03)00150-0
87.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
88.
Danaila
,
I.
, and
Boersma
,
B. J.
,
2000
, “
Direct Numerical Simulation of Bifurcating Jets
,”
Phys. Fluids
,
12
(
5
), pp.
1255
1257
.10.1063/1.870377
89.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
,
1997
, “
Large-Eddy Simulation of the Turbulent Mixing Layer
,”
J. Fluid Mech.
,
339
, pp.
357
390
.10.1017/S0022112097005429
You do not currently have access to this content.