This paper presents an evaluation of the environmental performance of an advanced zero emission plant (AZEP) including CO2 capture. The evaluation is conducted with the aid of an advanced exergoenvironmental analysis. The results are compared with those of a reference combined-cycle power plant without CO2 capture. Advanced exergy-based methods are used to (a) quantify the potential for improving individual components or overall systems, and (b) reveal detailed interactions among components—two features not present in conventional analyses, but very useful, particularly when evaluating complex systems. In an advanced exergoenvironmental analysis, the environmental impacts calculated in a conventional exergoenvironmental analysis are split into avoidable/unavoidable (to evaluate the potential for component improvement) and endogenous/exogenous (to understand the interactions among components) parts. As in the reference plant, the potential for reducing the environmental impact of the AZEP has been found to be limited by the relatively low avoidable environmental impact associated with the thermodynamic inefficiencies of several of its components. However, although the environmental impacts for the majority of the components of the plant are related mainly to internal inefficiencies and component interactions are of secondary importance, there are strong interactions between the reactor and some other components.

References

References
1.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2008
, “
A New Approach to the Exergy Analysis of Absorption Refrigeration Machines
,”
Energy
,
33
(
6
), pp.
890
907
.10.1016/j.energy.2007.09.012
2.
Cziesla
,
F.
,
Tsatsaronis
,
G.
, and
Gao
,
Z.
,
2006
, “
Avoidable Thermodynamic Inefficiencies and Costs in an Externally Fired Combined Cycle Power Plant
,”
Energy
,
31
, pp.
1472
1489
.10.1016/j.energy.2005.08.001
3.
Tsatsaronis
,
G.
, and
Park
,
M.-H.
,
2002
, “
On Avoidable and Unavoidable Exergy Destructions and Investment Costs in Thermal Systems
,”
Energy Convers. Manage.
,
43
, pp.
1259
1270
.10.1016/S0196-8904(02)00012-2
4.
Tsatsaronis
,
G.
,
1999
, “
Strengths and Limitations of Exergy Analysis
,
Thermodynamic Optimization of Complex Energy Systems
,
Bejan
A.
,
and
Mamut
E.
, eds.,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
93
100
.
5.
Tsatsaronis
,
G.
,
Lin
,
L.
, and
Pisa
,
J.
,
1993
, “
Exergy Costing in Exergoeconomics
,”
ASME J. Energy Resour. Technol.
,
115
(
1
), pp.
9
16
.10.1115/1.2905974
6.
Jin
,
H.
,
Ishida
,
M.
,
Kobayashi
,
M.
, and
Nunokawa
,
M.
,
1997
, “
Exergy Evaluation of Two Current Advanced Power Plants: Supercritical Steam Turbine and Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
250
256
.10.1115/1.2794998
7.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
.10.1115/1.4007659
8.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2012
, “
Advanced Exergoenvironmental Analysis of a Near-Zero Emission Power Plant With Chemical Looping Combustion
,”
Env. Sci. Technol.
,
46
(
5
), pp.
3001
3007
.10.1021/es203430b
9.
Muñoz
,
J. R.
, and
Michaelides
,
E. E.
,
1999
, “
The Impact of the Model of the Environment in Exergy Analyses
,”
ASME J. Energy Resour. Technol.
,
121
(
4
), pp.
268
276
.10.1115/1.2795993
10.
Han
,
T.
,
Hong
,
H.
,
Jin
,
H.
, and
Zhang
,
C.
,
2011
, “
An Advanced Power-Generation System With CO2 Recovery Integrating DME Fueled Chemical-Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012201
.10.1115/1.4003441
11.
Dumitrescu
,
A.
,
Lee
,
T. W.
, and
Roy
,
R. P.
,
2011
, “
Computational Model of a Hybrid Pressurized Solid Oxide Fuel Cell Generator/Gas Turbine Power Plant
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012602
.10.1115/1.4003707
12.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
,
Morosuk
,
T.
, and
Carassai
,
A.
,
2012
, “
Conventional and Advanced Exergetic Analyses Applied to a Combined Cycle Power Plant
,”
Energy
,
41
(
1
), pp.
146
152
.10.1016/j.energy.2011.05.028
13.
Möller
,
B. F.
,
Assadi
,
M.
, and
Potts
,
I.
,
2006
, “
CO2-Free Power Generation in Combined Cycles—Integration of Post-Combustion Separation of Carbon Dioxide in the Steam Cycle
,”
Energy
,
31
(
10–11
), pp.
1520
1532
.10.1016/j.energy.2005.05.017
14.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2011
, “
Exergoeconomic Analysis of an Advanced Zero Emission Plant
,”
ASME J. Eng. Gas Turbines Power
,
133
(
11
), p.
113001
.10.1115/1.4003641
15.
Petrakopoulou
,
F.
,
2010
, “
Comparative Evaluation of Power Plants With CO2 Capture: Thermodynamic, Economic and Environmental Performance
,” Ph.D. thesis, Technical University of Berlin, Berlin, Germany.
16.
Moeller
,
B. F.
,
Torisson
,
T.
, and
Assadi
,
M.
,
2006
, “
AZEP Gas Turbine Combined Cycle Power Plants - Thermo-Economic Analysis
,”
Int. J. Thermodyn.
,
9
, pp.
21
28
.
17.
Sundkvist
,
S. G.
,
Klang
,
Å.
,
Sjödin
,
M.
,
Wilhelmsen
,
K.
,
Åsen
,
K.
,
Tintinelli
,
A.
,
McCahey
,
S.
, and
Ye
,
H.
,
2004
, “
AZEP Gas Turbine Combined Cycle Power Plants—Thermal Optimization and LCA Analysis
,”
Proceedings of Seventh International Conference on Greenhouse Gas Control Technologies
, GHGT-7, Vancouver, Canada.
18.
Sundkvist
,
S. G.
,
Griffin
,
T.
, and
Thorshaug
,
N. P.
,
2001
, “
AZEP—Development of an Integrated Air Separation Membrane—Gas Turbine
.” Second Nordic Minisymposium on Carbon Dioxide Capture and Storage, Goeteburg, Sweden.
19.
Sundkvist
,
S. G.
,
Julsrud
,
S.
,
Vigeland
,
B.
,
Naas
,
T.
,
Budd
,
M.
,
Leistner
,
H.
, and
Winkler
,
D.
,
2007
, “
Development and Testing of AZEP Reactor Components
,”
Int. J. Greenhouse Gas Control
,
1
, pp.
180
187
.10.1016/S1750-5836(07)00025-4
20.
Gunnar
,
S.
,
Julsrud
,
S.
,
Vigeland
,
B.
,
Naas
,
T.
,
Budd
,
M.
,
Leistner
,
H.
, and
Winkler
,
D.
,
2007
, “
Development and Testing of AZEP Reactor Components
,”
1
(
3908
), pp.
180
187
.
21.
Griffin
,
T.
,
Sundkvist
,
S. G.
,
Asen
,
K.
, and
Bruun
,
T.
,
2005
, “
Advanced Zero Emissions Gas Turbine Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
81
85
.10.1115/1.1806837
22.
Petrakopoulou
,
F.
,
Boyano
,
A.
,
Cabrera
,
M.
, and
Tsatsaronis
,
G.
,
2010
, “
Exergy-Based Analyses of an Advanced Zero Emission Plant
,”
Int. J. Low-Carbon Technol.
,
5
(
4
), pp.
231
238
.10.1093/ijlct/ctq028
23.
Goedkoop
,
M.
, and
Spriensma
,
R.
,
2001
, “
The Eco-Indicator 99 A Damage Oriented Method for Life Cycle Impact Assessment
,” The Dutch Ministry of Housing, Methodology Report No. 2665507. Available at: http://irs.ub.rug.nl/dbi/4581696db734f
24.
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2009
, “
Advances in Exergy-Based Methods for Improving Energy Conversion Systems
,”
Optimization Using Exergy-Based Methods and Computational Fluid Dynamics
,
Papierflieger Verlag
,
Clausthal-Zellerfeld
, Germany, pp.
1
10
.
25.
Tsatsaronis
,
G.
,
2011
, “
Exergoeconomics and Exergoenvironmental Analysis
,”
Thermodynamics and the Destruction of Resources
,
B. R.
Bakshi
,
T.
Gutowski
, and
D.
Sekulic
, eds.,
Cambridge University Press
,
Cambridge
, UK, pp.
377
401
.
26.
Meyer
,
L.
,
Tsatsaronis
,
G.
,
Buchgeister
,
J.
, and
Schebek
,
L.
,
2009
, “
Exergoenvironmental Analysis for Evaluation of the Environmental Impact of Energy Conversion Systems
,”
Energy
,
34
(
1
), pp.
75
89
.10.1016/j.energy.2008.07.018
27.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
,
Morosuk
,
T.
, and
Paitazoglou
,
C.
,
2012
, “
Environmental Evaluation of a Power Plant Using Conventional and Advanced Exergy-Based Methods
,”
Energy - Int. J.
,
45
(
1
), pp.
23
30
.10.1016/j.energy.2012.01.042
You do not currently have access to this content.