Carbon nanotubes are surprisingly ubiquitous in their use for renewable energy applications as well as for environmental protection and remediation. Hence, this is the motivation for the current review, to investigate into their usefulness. The characteristic properties of these nanotubes are a result of their large surface areas, and their unique mechanical, electrical, and chemical properties, and in no small part, due to its relatively easy manufacturability. Research has been done using carbon nanotubes for hydrogen storage, although it does not seem logical that carbon nanotubes would be very useful for this purpose. Carbon nanotubes used for solar collectors are used mainly for their improved thermal and electrical conductivities. Organic solar cells do not have a long life since they deteriorate in the sun. Research into long-lasting, yet inexpensive organic solar cells is an active area, and should continue to be so for some time. Carbon nanotubes are activated by certain chemicals. They may be used to react with solids, liquids, and gases. Hence, they are employed for waste water treatment, liquid, and gaseous cleanup. They may be used to remove metals as well as life pathogens. As the number of new pollutants and pathogens entering the environment multiply, research should continue to study the use of carbon nanotubes with regards prevention and remediation.

References

References
1.
Pi Bond, Wikipedia
, July 11, 2012, http://en.wikipedia.org/wiki/Pi_bond
2.
Hydrogen bond
, Wikipedia, July 11, 2012, http://en.wikipedia.org/wiki/Hydrogen_bond
3.
Kang
,
S.
,
Herzberg
,
M.
,
Rodrigues
,
D. F.
, and
Elimelech
,
M.
,
2008
, “
Antibacterial Effects of Carbon Nanotubes: Size Does Matter
,”
Langmuir
,
24
, pp.
6409
6413
.10.1021/la800951v
4.
Liao
,
Q.
,
Sun
,
J.
, and
Gao
,
L.
,
2008
, “
Adsorption of Chlorophenols by Multi-Walled Carbon Nanotubes Treated With HNO3 and NH3
,”
Carbon
,
46
, pp.
544
561
.10.1016/j.carbon.2007.12.009
5.
Chen
,
Y.
,
Liu
,
C.
,
Li
,
F.
, and
Cheng
,
H. M.
,
2006
, “
Pore Structures of Multi-Walled Carbon Nanotubes Activated by Air, CO2, and KOH
,”
J. Porous Mater.
,
13
, pp.
141
146
.10.1007/s10934-006-7017-6
6.
Lee
,
S. M.
,
Lee
,
S. C.
,
Jung
,
J. H.
, and
Kim
,
H. J.
,
2005
, “
Pore Characterization of Multi-Walled Carbon Nanotubes Modified by KOH
,”
Chem. Phys. Lett.
,
416
, pp.
251
255
.10.1016/j.cplett.2005.09.107
7.
Lu
,
C.
, and
Su
,
F.
,
2007
, “
Adsorption of Natural Organic Matter by Carbon Nanotubes
,”
Sep. Purif. Technol.
,
58
, pp.
113
121
.10.1016/j.seppur.2007.07.036
8.
Xuchun
,
G.
,
Jinquan
,
W.
,
Kunlin
,
W.
,
Anyuan
,
C.
,
Hongwei
,
Z.
,
Yi
,
J.
,
Qinke
,
S.
, and
Dehai
,
W.
,
2009
Carbon Nanotube Sponges
,”
Adv. Mater.
,
22
(
5
), pp.
617
621
.
9.
Akasaka
,
T.
, and
Watari
,
F.
,
2009
, “
Capture of Bacteria by Flexible Carbon Nanotubes
,”
Acta Biomater.
,
5
, pp.
607
612
.10.1016/j.actbio.2008.08.014
10.
Apul
,
O. G.
,
Shao
,
T.
,
Zhang
,
S.
, and
Karanfil
,
T.
,
2012
, “
Impact of Carbon Nanotube Morphology on Phenanthrene Adsorption
,”
Environ. Toxicol. Chem.
,
31
(
1
), pp.
73
78
.
11.
Sinkkonen
,
S.
, and
Paasivirta
,
J.
,
2000
, “
Polychlorinated Organic Compounds in the Artic Cod Liver: Trends and Profiles
,”
Chemosphere
,
40
, pp.
619
629
.10.1016/S0045-6535(99)00309-4
12.
Yang
,
K.
, and
Xing
,
B.
,
2007
, “
Desorption of Polycyclic Aromatic Hydrocarbons From Carbon Nanomaterials in Water
,”
Environ. Pollut.
,
145
(
2
), pp.
529
537
.10.1016/j.envpol.2006.04.020
13.
Coughlin
,
R. W.
, and
Ezra
,
F. S.
,
1968
, “
Role of Surface Acidity in the Adsorption of Organic Pollutants on the Surface of Carbon
,”
Environ. Sci. Technol.
,
2
(
4
), pp.
291
297
.10.1021/es60016a002
14.
UNEP and the Woods Hole Research Center
,
2007
, June 21, 2013, “Reactive Nitrogen in the Environment,” http://www.unep.org/pdf/dtie/Reactive_Nitrogen.pdf
15.
Donnaperna
,
L.
,
Duclaux
,
L.
,
Gadiou
,
R.
,
Soneda
,
Y.
, and
Yoshizawa
,
N.
,
2009
, “
KOH Activated Carbon Multiwall Nanotubes
,”
Carbon Sci. Technol.
,
3
, pp.
120
124
.
16.
Yong
,
C.
,
Chang
,
L.
, and
Hui-Ming
,
C.
,
2004
, “
Characterization of Multi-Walled Carbon Nanotubes Activated by KOH
,” Shenyang National Laboratory for Materials Science.
17.
Cheng
,
H.
,
Yang
,
Q.
, and
Liu
,
C.
,
2001
, “
Hydrogen Storage in Carbon Nanotubes
,”
Carbon
,
39
, pp.
1447
1454
.10.1016/S0008-6223(00)00306-7
18.
Darkrim
,
F. L.
,
Malbrunot
,
P.
, and
Tartaglia
,
G. P.
,
2002
, “
Review of Hydrogen Storage by Adsorption in Carbon Nanotubes
,”
Int. J. Hydrogen Energy
,
27
, pp.
193
202
.10.1016/S0360-3199(01)00103-3
19.
Banerjee
,
S.
, and
Puri
,
I.
,
2008
, “
Enhancement in Hydrogen Storage in Carbon Nanotubes Under Modified Conditions
,”
Nanotechnology
,
19
, p.
155702
.10.1088/0957-4484/19/15/155702
20.
Iyakutti
,
K.
,
Kawazoe
,
Y.
,
Rajarajeswari
,
M.
, and
Surya
,
V. J.
,
2009
, “
Aluminum Hydride Coated Single-Walled Carbon Nanotube as a Hydrogen Storage Medium
,”
Int. J. Hydrogen Energy
,
34
, pp.
370
375
.10.1016/j.ijhydene.2008.09.086
21.
Chen
,
C.
, and
Huang
,
C.
,
2008
, “
Enhancement of Hydrogen Spillover Onto Carbon Nanotubes With Defect Feature
,”
Microporous Mesoporous Mater.
,
109
, pp.
549
559
.10.1016/j.micromeso.2007.06.003
22.
Gayathri
,
V.
, and
Geetha
,
R.
,
2007
, “
Hydrogen Adsorption in Defected Carbon Nanotubes
,”
Adsorption
,
13
, pp.
53
59
.10.1007/s10450-007-9002-z
23.
Dillon
,
A. C.
,
Jones
,
K. M.
,
Bekkedahl
,
T. A.
,
Kiang
,
C. H.
,
Bethune
,
D. S.
, and
Heben
,
M. J.
,
1997
, “
Storage of Hydrogen in Single Walled Carbon Nanotubes
,”
Nature
,
386
, pp.
377
379
.10.1038/386377a0
24.
Darkrim
,
F.
,
2000
, “
High Adsorptive Property of Opened Carbon Nanotubes at 77 K
,”
J. Phys. Chem. B
,
104
, pp.
6773
6776
.10.1021/jp0006532
25.
Wang
,
Q.
, and
Johnson
,
J. K.
,
1999
, “
Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption
,”
J. Phys. Chem. B
,
103
, pp.
4809
4813
.10.1021/jp9900032
26.
Yin
,
Y.
,
Mays
,
T.
, and
McEnaney
,
B.
,
2000
, “
Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays
,”
Langmuir
,
16
, pp.
10521
10527
.10.1021/la000900t
27.
Dillon, A. C., Whitney, E., Engtrakul, C., Curtis, C. J., O'Neill, K. J., Parilla, P. A., Simpson, L. J., Heben, M. J., Zhao, Y., Kim, Y. H., Zhang, S. B., 2007, “Novel Organometallic Fullerene Complexes for Vehicular Hydrogen Storage,” Physica Status Solidi. B, Basic Solid State Physics. Special Issue: Electronic Properties of Novel Nanostructures; with contributions from the 21st International Winterschool/Euroconference, Kirchberg, Tirol, Austria, 244(11), pp. 4319–4322.
28.
Liu
,
C.
,
Fan
,
Y. Y.
,
Liu
,
M.
,
Cong
,
H. T.
,
Cheng
,
H. M.
, and
Dresselhaus
,
M. S.
,
1999
, “
Hydrogen Storage in Single-Walled Carbon Nanotubes at Room
,”
Science
,
286
, pp.
1127
1129
.10.1126/science.286.5442.1127
29.
Ong
,
Y.
,
Ahmad
,
A.
,
Zein
,
S.
, and
Tan
,
S.
,
2010
, “
A Review on Carbon Nanotubes in an Environmental Protection and Green Engineering Perspective
,”
Braz. J. Chem. Eng.
,
27
(
2
). pp.
227
242
.
30.
Hirscher
,
M.
,
Becher
,
M.
,
Haluska
,
M.
,
Quintel
,
A.
,
Skakalova
,
V.
,
Choi
,
Y.
,
Dettlaff-Weglikowska
,
U.
,
Roth
,
S.
,
Stepanek
,
I.
,
Bernier
,
P.
,
Leonhardt
,
A.
, and
Fink
,
J.
,
2002
, “
Hydrogen Storage in Carbon Nanostructures
,”
J. Alloys Compd.
,
330–332
, pp.
654
658
.10.1016/S0925-8388(01)01643-7
31.
Tibbetts
,
G.
,
Meisner
,
G.
, and
Olk
,
C.
,
2001
, “
Hydrogen Storage Capacity of Carbon Nanotubes, Filaments, and Vapor-Grown Fibers
,”
Carbon
,
39
, pp.
2291
2301
.10.1016/S0008-6223(01)00051-3
32.
Kajiura
,
H.
,
Tsutsui
,
S.
,
Kadono
,
K.
,
Kakuta
,
M.
, and
Ata
,
M.
,
2003
, “
Hydrogen Storage Capacity of Commercially Available Carbon Materials at Room Temperature
,”
Appl. Phys. Lett.
,
82
, pp.
1105
1107
.10.1063/1.1555262
33.
Liu
,
C.
,
Chen
,
Y.
,
Wu
,
C.
,
Xu
,
S.
, and
Cheng
,
H.
,
2010
, “
Hydrogen Storage in Carbon Nanotubes Revisited
,”
Carbon
,
48
, pp.
452
455
.10.1016/j.carbon.2009.09.060
34.
Li
,
G.
, and
Liu
,
L.
,
2011
, “
Carbon Nanotubes for Organic Solar Cells
,”
IEEE Trans. Nanotechnol.
,
5
, pp.
1932
4510
.
35.
Sgobba
,
V.
, and
Guldi
,
D.
,
2008
, “
Carbon Nanotubes as Integrative Materials for Organic Photovoltaic Devices
,”
J Mater. Chem.
,
18
(
2
), pp.
141
248
.10.1039/b713798m
36.
Cataldo
,
S.
,
Salice
,
P.
,
Menna
,
E.
, and
Pignataro
,
B.
,
2012
, “
Carbon Nanotubes and Organic Solar Cells
,”
Energy Environ. Sci.
,
5
, pp.
5919
5940
.10.1039/c1ee02276h
37.
Scharber
,
M. C.
,
Muhlbacher
,
D.
,
Koppe
,
M.
,
Denk
,
P.
,
Waldauf
,
C.
,
Heeger
,
A. J.
, and
Brabec
,
C. J.
,
2006
, “
Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency
,”
Adv. Mater.
,
18
(
6
), pp.
789
794
.10.1002/adma.200501717
38.
Kymakis
,
E.
, and
Amaratunga
,
G. A. J.
,
2002
, “
Single-Wall Carbon Nanotube/Conjugated Polymer Photovoltaic Devices
,”
Appl. Phys. Lett.
,
80
(
1
), pp.
112
114
.10.1063/1.1428416
39.
Kymakis
,
E.
, and
Amaratunga
,
G. A. J.
,
2005
, “
Carbon Nanotubes as Electron Acceptors in Polymeric Photovoltaic
,”
Rev. Adv. Mater. Sci.
,
10
, pp.
300
305
.
40.
Geng
,
J.
, and
Zeng
,
T.
,
2006
, “
Influence of Single-Walled Carbon Nanotubes Induced Crystallinity Enhancement and Morphology Change on Polymer Photovoltaic Devices
,”
J. Am. Chem. Soc.
,
128
, pp.
16827
16833
.10.1021/ja065035z
41.
Zhao
,
X.
,
Song
,
L.
,
He
,
J.
,
Wu
,
T.
, and
Qin
,
Y.
,
2010
, “
Adsorption Characteristics of Ni2+ ion Onto the Diethylenetriaminepentaacetic Acid-Melamine/Polyvinylidene Fluoride Blended Resin
,”
Int. J. Energy Environ.
,
1
(
1
), pp.
121
132
.
42.
Shimoda
,
H.
,
Oh
,
S. J.
,
Geng
,
H. Z.
,
Walker
,
R. J.
,
Zhang
,
X. B.
,
McNeil
,
L. E.
, and
Zhou
,
O.
,
2002
, “
Self-Assembly of Carbon Nanotubes
,”
Adv. Mater.
,
14
(
12
), pp.
859
933
.10.1002/1521-4095(20020618)14:12<899::AID-ADMA899>3.0.CO;2-2
43.
Atieh
,
M. A.
,
Bakather
,
O. Y.
,
Al-Tawbini
,
B.
,
Bukhari
,
A. A.
,
Abuilaiwi
,
F. A.
, and
Fettouhi
,
M. B.
,
2010
, “
Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead From Water
,”
Bioinorg. Chem. Appl.
,
2010
, p.
603978
.10.1155/2010/603978
44.
Li
,
Y.
,
Zhu
,
Y.
,
Zhao
,
Y.
,
Wu
,
D.
, and
Luan
,
Z.
,
2006
, “
Different Morphologies of Carbon Nanotubes Effect on the Lead Removal From Aqueous Solution
,”
Diamond Relat. Mater.
,
15
, pp.
90
94
.10.1016/j.diamond.2005.07.004
45.
Robinson
,
J. A.
,
Snow
,
E. S.
,
Badescu
,
S.
,
Reinecke
,
T. L.
, and
Perkins
,
F. K.
,
2006
, “
Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors
,”
Nano Lett.
,
6
(
8
), pp.
1747
1751
.10.1021/nl0612289
46.
Hoefer
,
M.
, and
Bandaru
,
P. R.
,
2009
, “
Determination and Enhancement of the Capacitance Contributions in Carbon Nanotube Based Electrode Systems
,”
Appl. Phys. Lett.
,
95
(
18
), p.
183108
.10.1063/1.3258353
47.
Idea Connection
, “Chromium as Pollutant,” July 16, 2012, http://www.ideaconnection.com/solutions/491-Chromium-as-a-pollutant.html
48.
Di
,
Z.
,
Ding
,
J.
,
Peng
,
X.
,
Li
,
Y.
,
Luan
,
Z.
, and
Liang
,
J.
,
2006
, “
Chromium Adsorption by Aligned Carbon Nanotubes Supported Ceria Nanoparticles
,”
Chemosphere
,
62
, pp.
861
865
.10.1016/j.chemosphere.2004.06.044
49.
Dangerous Pollutants, Chromium
, July 16, 2012, http://www.dangerouspollutants.com/chromium.asp
50.
Hu
,
J.
,
Wang
,
S. W.
,
Shao
,
D. D.
,
Dong
,
Y. H.
,
Li
,
J. X.
, and
Wang
,
X. K.
,
2009
, “
Adsorption and Reduction of Chromium(VI) From Aqueous Solution by Multi-Walled Carbon Nanotubes
,”
Open Environ. Pollut. Toxicol. J.
,
1
, pp.
66
73
.10.2174/1876397900901010066
51.
Pillay
,
K.
,
Cukrowska
,
E. M.
, and
Coville
,
N. J.
,
2009
, “
Multi-Walled Carbon Nanotubes as Adsorbents for the Removal of Parts per Billion Levels of Hexavalent Chromium From Aqueous Solution
,”
J. Hazard Mater.
,
166
, pp.
1067
1075
.10.1016/j.jhazmat.2008.12.011
52.
Hu
,
J.
,
Chen
,
C.
,
Zhu
,
X.
, and
Wang
,
X.
,
2009
, “
Removal of Chromium From Aqueous Solution by Using Oxidized Multi-Walled Carbon Nanotubes
,”
J. Hazard. Mater.
,
162
, pp.
1542
1550
.10.1016/j.jhazmat.2008.06.058
53.
Atieh
,
M.
,
Bakather
,
O.
,
Tawabini
,
B.
,
Bukhari
,
A.
,
Khaled
,
M.
,
Alharthi
,
M.
,
Fettouhi
,
M.
, and
Abuilaiwi
F.
,
2010
, “
Removal of Chromium (III) From Water by Using Modified and Nonmodified Carbon Nanotubes
,”
J. Nanomater.
,
2010
, p.
232378
.10.1155/2010/232378
54.
Tuzen
,
M.
, and
Soylak
,
M.
,
2007
, “
Multiwalled Carbon Nanotubes for Speciation of Chromium in Environmental Samples
,”
J. Hazard. Mater.
,
147
, pp.
219
225
.10.1016/j.jhazmat.2006.12.069
55.
Di
,
Z.
,
Ding
,
J.
,
Peng
,
X.
,
Li
,
Y.
,
Luan
,
Z.
, and
Liang
,
J.
,
2006
, “
Chromium Adsorption by Aligned Carbon Nanotubes Supported Ceria Nanoparticles
,”
Chemosphere
,
62
, pp.
861
865
.10.1016/j.chemosphere.2004.06.044
56.
Lu
,
C.
,
Liu
,
C.
, and
Rao
,
G.
,
2008
, “
Comparisons of Sorbent Cost for the Removal of Ni2+ From Aqueous Solution by Carbon Nanotubes and Granular Activated Carbon
,”
J. Hazard. Mater.
,
151
, pp.
239
246
.10.1016/j.jhazmat.2007.05.078
57.
Lu
,
C.
, and
Liu
,
C.
,
2006
, “
Removal of Nickel(II) From Aqueous Solution by Carbon Nanotubes
,”
J. Chem. Technol. Biotechnol.
,
81
, pp.
1932
1940
.10.1002/jctb.1626
58.
Adolph
,
M.
,
Xavier
,
Y.
,
Kriveshini
,
P.
, and
Rui
,
K.
,
2012
, “
Phosphine Functionalised Multi-Walled Carbon Nanotubes: A New Adsorbent for the Removal of Nickel From Aqueous Solution
,”
J. Environ. Sci.
,
24
(
6
), pp.
1133
1141
.10.1016/S1001-0742(11)60880-2
59.
Kandaha
,
M.
, and
Meunier
,
J.-L.
,
2007
, “
Removal of Nickel Ions From Water by Multi-Walled Carbon Nanotubes
,”
J. Hazard. Mater.
,
146
, pp.
283
288
.10.1016/j.jhazmat.2006.12.019
60.
State of Ohio Environmental Protection Agency
,
2002
, “
Pollution Prevention Opportunities for PBT Chemicals, Phenol.
,” Office of Pollution Prevention, Sept., No. 100.
61.
Lin
,
D.
, and
Xing
,
B.
,
2008
, “
Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups
,”
Environ. Sci. Technol.
,
42
, pp.
7254
7259
.10.1021/es801297u
62.
Vecitis
,
C.
,
Schnoor
,
M.
,
Rahaman
,
M. S.
,
Schiffman
,
J.
, and
Elimelech
,
M.
,
2011
, “
Electrochemical Multiwalled Carbon Nanotube Filter for Viral and Bacterial Removal and Inactivation
,”
Environ. Sci. Technol.
,
45
, pp.
3672
3679
.10.1021/es2000062
63.
Srivastava
,
A.
,
Srivastava
,
O. N.
,
Talapatra
,
S.
,
Vajtai
,
R.
, and
Ajayan
,
P. M.
,
2004
, “
Carbon Nanotube Filters
,”
Nature Mater.
,
3
, pp.
610
614
.10.1038/nmat1192
64.
Brady-Estevez
,
A.
,
Schnoor
,
M.
,
Vecitis
,
C.
,
Saleh
,
N.
, and
Elimelech
,
M.
,
2010
, “
Multiwalled Carbon Nanotube Filter: Improving Viral Removal at Low Pressure
,”
Langmuir
,
26
(
18
), pp.
14975
14982
.10.1021/la102783v
65.
Brady-Estevez
,
A.
,
Kang
,
S.
, and
Elimelech
,
M.
,
2008
, “
A Single-Walled-Carbon-Nanotube Filter for Removal of Viral and Bacterial Pathogens
,”
4
, pp.
481
484
.
66.
Brady-Estevez
,
A.
,
Nguyen
,
T.
,
Gutierrez
,
L.
, and
Elimelech
,
M.
,
2010
, “
Impact of Solution Chemistry on Viral Removal by a Single-Walled Carbon Nanotube Filter
,”
Water Res.
,
44
, pp.
3773
3780
.10.1016/j.watres.2010.04.023
67.
Chungsying
,
L.
,
Shih-Chieh
,
H.
,
Fengsheng
,
S.
,
Wanting
,
Z.
, and
Wenfa
,
C.
,
2010
, “
Thermodynamics and Regeneration Studies of CO2 Adsorption on Multiwalled Carbon Nanotubes
,”
Chem. Eng. Sci.
,
65
(
4
), pp.
1354
1361
.10.1016/j.ces.2009.10.005
68.
Carbamate
, Wikipedia, July 12, 2012, http://en.wikipedia.org/wiki/Carbamates
69.
Su
,
F.
,
Lu
,
C.
,
Cnen
,
W.
,
Bai
,
H.
, and
Hwang
,
J.
,
2010
, “
Capture of CO2 From Flue Gas Via Multiwalled Carbon Nanotubes
,”
Chem. Eng. Sci.
,
65
, pp.
1354
1361
.10.1016/j.ces.2009.10.005
70.
Cinke
,
M.
,
Li
,
J.
,
Bauschlicher
,
C.
, Jr.
,
Ricca
,
A.
, and
Meyyappan
,
M.
,
2003
, “
CO2 Adsorption in Single-Walled Carbon Nanotubes
,”
Chem. Phys. Lett.
,
376
, pp.
761
766
.10.1016/S0009-2614(03)01124-2
71.
Hu
,
Y.
, and
Ruckenstein
,
E.
,
2006
, “
Applicability of Dubinin–Astakhov Equation to CO2 Adsorption on Single-Walled Carbon Nanotubes
,”
Chem. Phys. Lett.
,
425
, pp.
306
310
.10.1016/j.cplett.2006.05.059
72.
Douwes
,
J.
,
Thorne
,
P.
,
Pearce
,
N.
, and
Heederik
,
D.
,
2003
, “
Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects
,”
Ann. Occup. Hyg.
,
47
(
3
), pp.
187
200
.10.1093/annhyg/meg032
73.
Yang
,
S.
,
Huang
,
Y.
,
Luo
,
C.
,
Li
,
Y.
,
Huang
,
J.
,
Chuang
,
C.
,
Chen
,
C.
,
Fang
,
W.
, and
Chuang
,
C.
,
2011
, “
Inactivation Efficiency of Bioaerosols Using Carbon Nanotube Plasma
,”
Clean—Soil, Air, Water
,
39
(
3
), pp.
201
205
.10.1002/clen.201000142
74.
Guan
,
T.
, and
Yao
,
M.
,
2010
, “
Use of Carbon Nanotube Filter in Removing Bioaerosols
,”
J. Aerosol. Sci.
,
41
, pp.
611
620
.10.1016/j.jaerosci.2010.03.002
75.
Xu
,
Z.
, and
Yao
,
M.
,
2011
, “
Effects of Single-Walled Carbon Nanotube Filter on Culturability and Diversity of Environmental Bioaerosols
,”
J. Aerosol Sci.
,
42
,
pp 387
396
.10.1016/j.jaerosci.2011.03.003
76.
Pulskamp
,
K.
,
Worle-Knirsch
,
J.
,
Hennrich
,
F.
,
Kern
,
K.
, and
Harald, F.
Krug
,
2007
, “
Human Lung Epithelial Cells Show Biphasic Oxidative Burst After Single-Walled Carbon Nanotube Contact
,”
Carbon
,
45
, pp.
2241
2249
.10.1016/j.carbon.2007.06.054
You do not currently have access to this content.