This paper presents, assesses, and optimizes a point absorber wave energy converter (WEC) through numerical modeling, simulation, and analysis. Wave energy conversion is a technology uniquely suited for assisting in power generation in the offshore oil and gas platforms. A linear frequency domain model is created to predict the behavior of the heaving point absorber WEC system. The hydrodynamic parameters are obtained with AQWA, a software package based on boundary element methods. A linear external damping coefficient is applied to enable power absorption and an external spring force is introduced to tune the point absorber to the incoming wave conditions. The external damping coefficient and external spring forces are the control parameters, which need to be optimized to maximize the power absorption. Two buoy shapes are tested and a variety of diameters and drafts are compared. Optimal shape, draft, and diameter of the model are then determined to maximize its power absorption capacity.

References

References
1.
Pelc
,
R.
, and
Fujita
,
R. M.
,
2002
, “
Renewable Energy From the Ocean
,”
Marine Policy
,
26
(
6
), pp.
471
479
.10.1016/S0308-597X(02)00045-3
2.
Pastor
,
J.
, and
Liu
,
Y.-C.
,
2012
, “
Hydrokinetic Energy Overview and Energy Potential for the Gulf of Mexico
,”
2012 IEEE Green Technologies Conference
, Tulsa, OK, April 19–20.
3.
McCormick
,
M. E.
, and
Surko
,
S. W.
,
1989
, “
An Experimental Study of the Performance of the Counter-Rotating Wave Energy Conversion Turbine
,”
ASME J. Energy Resour. Technol.
,
111
(
3
), pp.
167
173
.10.1115/1.3231419
4.
McCormic
,
M. E.
,
1991
, “
A Theoretical Analysis of a Self-Propelled Backward-Bent Duct Wave Energy Conversion System
,”
ASME J. Energy Resour. Technol.
,
113
(
2
), pp.
94
100
.10.1115/1.2905793
5.
Weinstein
,
A.
,
Fredrikson
,
G.
,
Parks
,
M. J.
, and
Nielsen
,
K.
,
2004
, “
AquaBuOY—The Offshore Wave Energy Converter Numerical Modeling and Optimization
,”
Proceedings of MTTS/IEEE Techno-Ocean’04
,
Kobe
,
Japan
,
November 9–12
, pp.
1854
1859
.
6.
Henderson
,
R.
,
2006
, “
Design, Simulation, and Testing of a Novel Hydraulic Power Take-Off System for the Pelamis Wave Energy Converter
,”
Renew. Energy
,
31
(
2
), pp.
271
283
.10.1016/j.renene.2005.08.021
7.
Falcao
,
A. F. d. O.
,
2007
, “
Modeling and Control of Oscillating-Body Wave Energy Converters With Hydraulic Power Take-Off and Gas Accumulator
,”
Ocean Eng.
,
34
(
14–15
), pp.
2021
2032
.10.1016/j.oceaneng.2007.02.006
8.
Margheritini
,
L.
,
Vicinanza
,
D.
, and
Frigaard
,
P.
,
2009
, “
SSG Wave Energy Converter: Design, Reliability and Hydraulic Performance of an Innovative Overtopping Device
,”
Renew. Energy
,
34
(
5
), pp.
1371
1380
.10.1016/j.renene.2008.09.009
9.
Ruellan
,
M.
,
BenAhmed
,
H.
,
Multon
,
B.
, and
Josset
,
C.
,
2010
, “
Design Methodology for a SEAREV Wave Energy Converter
,”
IEEE Trans. Energy Convers.
,
25
(
3
), pp.
760
767
.10.1109/TEC.2010.2046808
10.
Elwood
,
D.
,
Yim
,
S. C.
,
Prudell
,
J.
,
Stillinger
,
C.
,
von Jouanne
,
A.
,
Brekken
,
T.
,
Brown
,
A.
, and
Paasch
,
R.
,
2010
, “
Design, Construction, and Ocean Testing of a Taut-Moored Dual-Body Wave Energy Converter With a Linear Generator Power Take-Off
,”
Renew. Energy
,
35
(
2
), pp.
348
354
.10.1016/j.renene.2009.04.028
11.
Sheng
,
W.
, and
Lewis
,
A.
,
2012
, “
Assessment of Wave Energy Extraction From Seas: Numerical Validation
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041701
.10.1115/1.4007193
12.
Monds
,
J. R.
,
2013
, “
Multicriteria Decision Analysis for Wave Power Technology in Canada
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021201
.10.1115/1.4025408
13.
Green
,
W. L.
,
Campo
,
J. J.
,
Parker
,
J. E.
,
Miller
,
J. A.
, and
Miles
,
J. B.
,
1983
, “
Wave Energy Conversion With An Oscillating Water Column on a Fixed Offshore Platform
,”
ASME J. Energy Resour. Technol.
,
105
(
4
), pp.
487
490
.10.1115/1.3230958
14.
Pastor
,
J.
, and
Liu
,
Y.-C.
,
2012
, “
Hydrokinetic Energy Overview and Energy Potential for the Gulf of Mexico
,”
Proceedings of 2012 IEEE Green Technologies Conference
, Tulsa, OK, April 19–20.
15.
AQWA-WAVE User Manual, 12.1, ANSYS, Inc., September
2009
.
16.
Houmb
,
O. G.
, and
Overvik
,
T.
,
1976
, “
Parametrization of Wave Spectra and Long Term Joint Distribution of Wave Height and Period
,”
Proceedings of 1st International Conference on Behavior of Offshore Structures (BOSS)
, Trondheim, Norway.
17.
Vantorre
,
M.
,
Banasiak
,
R.
, and
Verhoeven
,
R.
,
2004
, “
Modeling of Hydraulic Performance and Wave Energy Extraction by a Point Absorber in Heave
,”
Appl. Ocean Res.
,
26
, pp.
61
72
.10.1016/j.apor.2004.08.002
18.
Ricci
,
P.
,
Saulnier
,
J. B.
, and
Falcao
,
A.
,
2007
, “
Point-Absorber Arrays: A Configuration Study Off the Portuguese West-Coast
,”
Proceedings of 7th European Wave and Tidal Energy Conference
, Porto, Portugal, September 11–13.
19.
Crabb
,
J.
,
1980
, “
Synthesis of a Directional Wave Climate
,”
Power from Sea Waves
,
B.
Count
, ed.,
Academic Press
,
London
.
20.
De Backer
,
G.
,
Vantorre
,
M.
,
Banasiak
,
R.
,
Beels
,
C.
, and
De Rouck
,
J.
,
2007
, “
Numerical Modeling of Wave Energy Absorption by a Floating Point Absorber System
,”
Proceedings of 17th International Offshore and Polar Engineering Conference
, Lisbon, Portugal, July 1–6.
You do not currently have access to this content.