A simple cooling cogeneration has been developed by coupling a Kalina cycle system (KCS) with a vapor absorption refrigeration (VAR) system. The working fluid used in this theoretical thermodynamic evaluation is ammonia water mixture. A low temperature heat recovery (150 °C–200 °C) from engine exhaust gas, solar collectors, or similar can be used to operate the plant. A controlling facility is provided to set the required amount of power or cooling to meet the variable demand. In this proposed plant, the liquid refrigerant absorbs more amount of heat from evaporator surroundings with a flow control located in between power and cooling cycles. The extra included components are condenser, heat exchanger and throttling device over KCS plant. Due to possibility of more cooling, it offers high energy utilization factor (EUF). The coupled plant characteristics are studied with changes in mass split ratio, separator vapor fraction, separator temperature, and turbine concentration to develop efficient working conditions. The power mass split ratio is varied from 80% to 100% to run the coupled plant at nearly full load conditions. The separator vapor fraction and temperature are optimized at 45% and 150 °C, respectively. It is recommended to maintain the turbine concentration above 0.85 for optimum power and cooling. The maximum cycle EUF and plant EUF are 0.15 and 0.06, respectively, at 80% power mass split ratio. The specific power and specific cooling at these conditions are 62 kW/kg and 72 kW/kg, respectively.

References

References
1.
Kalina
,
I. A.
,
1984
, “
Combined Cycle System With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
737
742
.10.1115/1.3239632
2.
Shankar Ganesh
,
N.
, and
Srinivas
,
T.
,
2013
, “
Processes Assessment in Binary Mixture Plant
,
Int. J. Energy Environ.
,
4
(
1
), pp.
321
330
. Available at: http://www.ijee.ieefoundation.org/vol4/issue2/IJEE_15_v4n2.pdf
3.
Shankar Ganesh
,
N.
, and
Srinivas
,
T.
,
2012
, “
Design and Modeling of Low Temperature Solar Thermal Power Station
,”
Appl. Energy
,
91
(
1
), pp.
180
186
.10.1016/j.apenergy.2011.09.021
4.
Shankar Ganesh
,
N.
, and
Srinivas
,
T.
,
2013
, “
Thermodynamic Assessment of Heat Source Arrangements in Kalina Power Station
,”
ASCE J. Energy Eng.
,
139
(
2
), pp.
1
10
.10.1061/(ASCE)EY.1943-7897.0000108
5.
Shankar Ganesh
,
N.
, and
Srinivas
,
T.
,
2013
, “
Power Augmentation in a Kalina Power Station for Medium Temperature Low Grade Heat
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), pp.
1
10
.10.1115/1.4023559
6.
Srinivas
,
T.
,
Reddy
,
B. V.
, and
Gupta
,
A. V. S. S. K. S.
,
2012
, “
Thermal Performance Prediction of a Biomass based Integrated Gasification Combined Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), pp.
1
9
.10.1115/1.4006042
7.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
, and
Reddy
,
B. V.
,
2009
, “
Thermodynamic Equilibrium Model and Exergy Analysis of a Biomass Gasifier
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), pp.
1
7
.10.1115/1.3185354
8.
Tyagi
,
K. P.
,
1988
, “
Design Parameters of an Aqua-Ammonia Vapor Absorption Refrigeration System
,”
Heat Recovery Syst. CHP
,
8
(
4
), pp.
375
377
.10.1016/0890-4332(88)90032-4
9.
Horuza
,
I.
, and
Callander
,
T. M. S.
,
2004
, “
Experimental Investigation of a Vapor Absorption Refrigeration System
,”
Int. J. Refrig.
,
27
(
1
), pp.
10
16
.10.1016/S0140-7007(03)00119-1
10.
Fernandez-Seara
,
J.
,
Vales
,
A.
, and
Vazquez
,
M.
,
1998
, “
Heat Recovery System to Power an Onboard NH3-H2O Absorption Refrigeration Plant in Trawler Chiller Fishing Vessels
,”
Appl. Therm. Eng.
,
18
(
12
), pp.
1189
1205
.10.1016/S1359-4311(98)00001-5
11.
Darwish
,
N. A.
,
Al-Hashimi
,
S. H.
, and
Al-Mansoori
,
A. S.
,
2008
, “
Performance Analysis and Evaluation of a Commercial Absorption–Refrigeration Water–Ammonia (ARWA) System
,”
Int. J. Refrig.
,
31
(
7
), pp.
1214
1223
.10.1016/j.ijrefrig.2008.02.005
12.
Aivares
,
S. G.
, and
Trepp
,
Ch.
,
1987
, “
Simulation of a Solar Driven Aqua-Ammonia Absorption Refrigeration System Part 1: Mathematical Description and System Optimization
,”
Int. J. Refrig.
,
10
(
2
), pp.
40
48
.10.1016/0140-7007(87)90095-8
13.
Manrique
,
J. A.
,
1991
, “
Thermal Performance of an Ammonia-Water Refrigeration System
,”
Int. Commun. Heat Mass Transfer
,
18
(
6
), pp.
779
789
.10.1016/0735-1933(91)90029-4
14.
Manzela
A. A.
,
Hanriot
,
S. M.
,
Gomez
,
L. C.
, and
Sodre
,
J. R.
,
2010
, “
Using Engine Exhaust Gas as Energy Source for an Absorption Refrigeration System
,”
Appl. Energy
,
87
(
4
), pp.
1141
1148
.10.1016/j.apenergy.2009.07.018
15.
Tamm
,
G.
,
Goswami
,
D. Y.
,
Lu
,
S.
, and
Hasan
,
A. A.
,
2003
, “
Novel Combined Power and Cooling Thermodynamic Cycle for Low Temperature Heat Sources, Part 1: Theoretical Investigation
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
218
222
.10.1115/1.1564576
16.
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Yogi Goswami
,
D.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), pp.
1
8
.10.1115/1.4006434
17.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2005
, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
125
130
.10.1115/1.1885039
18.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2003
, “
On Evaluating Efficiency of a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
221
227
.10.1115/1.1595110
19.
Hasan
,
A. A.
, and
Goswami
,
D. Y.
,
2003
, “
Exergy Analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
125
(
1
), pp.
55
60
.10.1115/1.1530628
20.
Shankar
,
R.
, and
Srinivas
,
T.
,
2012
, “
Modeling of Energy Extraction in Vapor Absorption Refrigeration System
,”
Proc. Eng.
,
38
, pp.
98
104
.10.1016/j.proeng.2012.06.014
21.
Shankar
,
R.
, and
Srinivas
,
T.
,
2012
, “
Solar Thermal based Power and Vapor Absorption Refrigeration System
,”
Proc. Eng.
,
38
, pp.
730
736
.10.1016/j.proeng.2012.06.092
22.
Jawahar
,
C. P.
,
Saravanan
,
R.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2013
, “
Simulation Studies on GAX Based Kalina Cycle for both Power and Cooling Applications
,”
Appl. Therm. Eng.
,
50
(
2
), pp.
1522
1529
.10.1016/j.applthermaleng.2011.11.004
23.
Ziegler
,
B.
, and
Trepp
,
C.
,
1984
, “
Equation of State for Ammonia–Water Mixtures
,”
Int. J. Refrig.
,
7
(
2
), pp.
101
6
.10.1016/0140-7007(84)90022-7
24.
Valan Arasu
,
A.
, and
Sornakumar
,
T.
,
2007
, “
Design, Manufacture and Testing of Fiberglass Reinforced Parabola Trough for Parabolic Trough Solar Collectors
,”
Solar Energy
,
81
(
10
), pp.
1273
1279
.10.1016/j.solener.2007.01.005
25.
Padilla
,
R. V.
,
Demirkaya
,
G.
,
Goswami
,
Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
,
2010
, “
Analysis of Power and Cooling Cogeneration using Ammonia-Water Mixture
,”
Energy
35
(
2
), pp.
4649
4657
.10.1016/j.energy.2010.09.042
You do not currently have access to this content.