As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and, at the same time, develop alternative energy sources. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and can reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they can be considered carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds. Thus, an alternative technology for biomass utilization is described herein to address increasing energy needs in an environmentally-benign manner. More specifically, a multistep process/device is presented to accept granulated or pelletized biomass, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolytically, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of biomass into “clean” thermal energy and, eventually to electricity.

References

References
1.
Danje
,
S.
,
2011
,
Fast Pyrolysis of Corn Residues for Energy Production
,
Stellenbosch University
,
Stellenbosch, South Africa
.
2.
US-EIA
,
2011
, “
EIA Projects World Energy Use to Increase 53 Percent by 2035; China and India Account for Half of the Total Growth
,” http://www.eia.gov/pressroom/releases/press368.cfm
3.
US-EIA
,
2012
, “
Annual Energy Review
,” http://www.eia.gov/totalenergy/data/annual/index.cfm
4.
Bragato
,
M.
,
Joshi
,
K.
,
Carlson
,
J. B.
,
Tenório
,
J. A.
, and
Levendis
,
Y. A.
,
2012
, “
Combustion of Coal, Bagasse, and Blends Thereof Part I: Emissions From Batch Combustion of Fixed Beds of Fuels
,”
Fuel
,
96
, pp.
43
50
.
5.
Bragato
,
M.
,
Joshi
,
K.
,
Carlson
,
J. B.
,
Tenório
,
J. A.
, and
Levendis
,
Y. A.
,
2012
, “
Combustion of Coal, Bagasse, and Blends Thereof: Part II: Speciation of PAH Emissions
,”
Fuel
,
96
, pp.
51
58
.
6.
Thomas
B.
Reed
,
S. G.
,
2001
, “
A Survey of Biomass Gasification 2001: Gasifier Projects and Manufacturers Around the World
,”
National Renewable Energy Laboratory
, Golden, CO.
7.
Narvaez
,
I.
,
Orio
,
A.
,
Aznar
,
M. P.
, and
Corella
,
J.
,
1996
, “
Biomass Gasification With Air in an Atmospheric Bubbling Fluidized Bed
,”
Effect of Six Operational Variables on the Quality of the Produced Raw Gas,” Ind. Eng. Chem. Res.
,
35
(
7
), pp.
2110
2120
.
8.
Gil
,
J.
,
Corella
,
J.
,
Aznar
,
M. A. P.
, and
Caballero
,
M. A.
,
1999
, “
Biomass Gasification in Atmospheric and Bubbling Fluidized Bed: Effect of the Type of Gasifying Agent on the Product Distribution
,”
Biomass Bioenergy
,
17
(
5
), pp.
389
403
.
9.
Antal
,
M. J.
,
Allen
,
S. G.
,
Schulman
,
D.
,
Xu
,
X.
, and
Divilio
,
R. J.
,
2000
, “
Biomass Gasification in Supercritical Water
,”
Ind. Eng. Chem. Res.
,
39
(
11
), pp.
4040
4053
.
10.
Rapagna
,
S.
,
Jand
,
N.
,
Kiennemann
,
A.
, and
Foscolo
,
P.
,
2000
, “
Steam-Gasification of Biomass in a Fluidised-Bed of Olivine Particles
,”
Biomass Bioenergy
,
19
(
3
), pp.
187
197
.
11.
Devi
,
L.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J.
,
2003
, “
A Review of the Primary Measures for Tar Elimination in Biomass Gasification Processes
,”
Biomass Bioenergy
,
24
(
2
), pp.
125
140
.
12.
Li
,
X.
,
Grace
,
J.
,
Lim
,
C.
,
Watkinson
,
A.
,
Chen
,
H.
, and
Kim
,
J.
,
2004
, “
Biomass Gasification in a Circulating Fluidized Bed
,”
Biomass Bioenergy
,
26
(
2
), pp.
171
193
.
13.
Matsumura
,
Y.
,
Minowa
,
T.
,
Potic
,
B.
,
Kersten
,
S. R.
,
Prins
,
W.
,
van Swaaij
,
W. P.
,
van de Beld
,
B.
,
Elliott
,
D. C.
,
Neuenschwander
,
G. G.
, and
Kruse
,
A.
,
2005
, “
Biomass Gasification in Near-and Super-Critical Water: Status and Prospects
,”
Biomass Bioenergy
,
29
(
4
), pp.
269
292
.
14.
Lv
,
P.
,
Xiong
,
Z.
,
Chang
,
J.
,
Wu
,
C.
,
Chen
,
Y.
, and
Zhu
,
J.
,
2004
, “
An Experimental Study on Biomass Air–Steam Gasification in a Fluidized Bed
,”
Bioresour. Technol.
,
95
(
1
), pp.
95
101
.
15.
Güell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.10.1115/1.4007660
16.
Meng
,
X.
,
Benito
,
P.
,
de Jong
,
W.
,
Basile
,
F.
,
Verkooijen
,
A. H.
,
Fornasari
,
G.
, and
Vaccari
,
A.
,
2011
, “
Steam–O2 Blown Circulating Fluidized-Bed (CFB) Biomass Gasification: Characterization of Different Residual Chars and Comparison of Their Gasification Behavior to Thermogravimetric (TG)-Derived Pyrolysis Chars
,”
Energy Fuels
,
26
(
1
), pp.
722
739
.
17.
Kumar
,
V.
,
2009
, “
Pyrolysis and Gasification of Lignin and Effect of Alkali Addition
,”
Ph.D. thesis
,
Georgia Institute of Technology
, Atlanta, GA.
18.
Zanzi
,
R.
,
Sjöström
,
K.
, and
Björnbom
,
E.
,
1996
, “
Rapid High-Temperature Pyrolysis of Biomass in a Free-Fall Reactor
,”
Fuel
,
75
(
5
), pp.
545
550
.
19.
Zanzi
,
R.
,
Sjöström
,
K.
, and
Björnbom
,
E.
,
2002
, “
Rapid Pyrolysis of Agricultural Residues at High Temperature
,”
Biomass Bioenergy
,
23
(
5
), pp.
357
366
.
20.
Zanzi
,
R.
,
Bai
,
X.
,
Capdevila
,
P.
, and
Bjornbom
,
E.
, “
Pyrolysis of Biomass in Presence of Steam for Preparation of Activated Carbon, Liquid, and Gaseous Products
,”
Proceedings of 6th World Congress of Chemical Engineering Melbourne
,
Australia
, pp.
23
27
.
21.
Demirbaş
,
A.
,
2002
, “
Gaseous Products From Biomass by Pyrolysis and Gasification: Effects of Catalyst on Hydrogen Yield
,”
Energy Convers. Manage.
,
43
(
7
), pp.
897
909
.
22.
Demirbas
,
A.
,
2004
, “
Effects of Temperature and Particle Size on Bio-Char Yield From Pyrolysis of Agricultural Residues
,”
J. Anal. Appl. Pyrolsis
,
72
(
2
), pp.
243
248
.
23.
Chen
,
G.
,
Andries
,
J.
,
Luo
,
Z.
, and
Spliethoff
,
H.
,
2003
, “
Biomass Pyrolysis/Gasification for Product Gas Production: The Overall Investigation of Parametric Effects
,”
Energy Convers. Manage.
,
44
(
11
), pp.
1875
1884
.
24.
Srinivas
,
T.
,
Reddy
,
B.
, and
Gupta
,
A.
,
2012
, “
Thermal Performance Prediction of a Biomass Based Integrated Gasification Combined Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021002
.10.1115/1.4006042
25.
Mayor
,
J. R.
, and
Williams
,
A.
,
2010
, “
Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
041801
.10.1115/1.4003004
26.
Dhungana
,
A.
,
Basu
,
P.
, and
Dutta
,
A.
,
2012
, “
Effects of Reactor Design on the Torrefaction of Biomass
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041801
.10.1115/1.4007484
27.
Jinno
,
D.
,
Gupta
,
A. K.
, and
Yoshikawa
,
K.
,
2004
, “
Thermal Decomposition Characteristics of Critical Components in Solid Wastes
,”
Environ. Eng. Sci.
,
21
(
1
), pp.
65
72
.
28.
Davies
,
A.
,
2013
, “
Environmentally-Benign Conversion of Biomass Residues to Electricity
,”
M.S. thesis
,
Northeastern University
,
Boston, MA
.
29.
30.
Bonnardeaux
,
J.
,
2007
, “
Potential Uses for Distillers Grains
,”
Department of Agriculture and Food, Government of Western Australia
, July 2013, http://www.agric.wa.gov.au/objtwr/imported_assets/content/sust/biofuel/potentialusesgrains042007.pdf
31.
Information
,
K. E.
,
2013
, “
Kansas Ethanol Information
,” http://www.ksgrains.com/ethanol/ddgs.html
32.
VIASPACE
,
2012
, “
US Department of Agriculture Officially Approves Giant KingTM Grass in the United States
,” http://www.viaspace.com/press_article.php?id = 1377
33.
Inc.
,
V. G. E.
,
2013
, “
Giant King Grass: The New Biomass for Green Energy
,” http://www.viaspacegreenenergy.com/giant-king-grass.php
34.
US-EIA
,
2011
, “
How Much Electricity Does an American Home Use?—FAQ
,” http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3
35.
Giuntoli
,
J.
,
De Jong
,
W.
,
Arvelakis
,
S.
,
Spliethoff
,
H.
, and
Verkooijen
,
A.
,
2009
, “
Quantitative and Kinetic TG-FTIR Study of Biomass Residue Pyrolysis: Dry Distiller's Grains With Solubles (DDGS) and Chicken Manure
,”
J. Anal. Appl. Pyrolsis
,
85
(
1
), pp.
301
312
.
36.
Soheilian
,
R.
,
Davies
,
A.
,
Talebi Anaraki
,
S.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
, 2013, “
Pyrolytic Gasification of Post-Consumer Polyolefins to Allow for “Clean” Premixed Combustion
,”
Energy Fuels
,
27
(
8
), pp. 4859–4868.10.1021/ef4008592
37.
“STANJAN Chemical Equilibrium Calculation,”
http://navier.engr.colostate.edu/tools/equil.html
38.
Mansur
,
D.
,
Shimokawa
,
M.
,
Oba
,
K.
,
Nakasaka
,
Y.
,
Tago
,
T.
, and
Masuda
,
T.
,
2013
, “
Conversion of Ethanol Fermentation Stillage Into Aliphatic Ketones by Two-Step Process of Hydrothermal Treatment and Catalytic Reaction
,”
Fuel Process Technol.
,
108
, pp.
139
145
.
39.
Dean
,
J.
,
Braun
,
R.
,
Penev
,
M.
,
Kinchin
,
C.
, and
Muñoz
,
D.
,
2011
, “
Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031801
. 10.1115/1.4004788
You do not currently have access to this content.