Energy is a big challenge in the coming years. The global population is increasing. Not only are there more people in the world, but the human drive to increase living standards have increased individual energy demands. Growing energy needs were typically met by finding new sources of fossil fuels. People have fortunately begun to realize the adverse environmental impact of burning fossil fuels and that this practice cannot be maintained indefinitely, leading to renewed interest in photovoltaic technologies. The discovery of the photoelectric effect brought hope to the objective of helping to fill the world energy needs with an already continuously delivered source. The discovery of the photoelectric effect was the birth of the idea, but it was the development of the crystalline silicon cell that marked the beginning of the industry. The cost and inefficiency of these solar panels have prevented them from becoming an economically competitive form of everyday power generation. Cost was reduced with the introduction of amorphous silicon thin-film cells despite slightly lower efficiencies. Their lower manufacturing costs have allowed solar energy to be included in more applications; the costs have not been reduced enough to compete with current grid rates. The current trend in research suggests that the application of nanotechnology may be the awaited break needed to break this cost barrier. Nanotechnology promises to reduce cost because they require less controlled conditions, which will greatly reduce the cost per cell, and the initial cost of a new cell type. Nanoscience and nanotechnology are being researched and developed to help solve problems that have prevented the use of other promising technologies, and improving efficiencies of those technologies that have been developed. The addition of nanoparticles to the matrix is a possible way to improve electron transport, and nanotubes could be used in conjunction with nanoparticles. The science of interactions and addition of nanoparticles and their function in solar photovoltaic cells is known, but still developing. Nanoscience has produced proof-of-concept photovoltaic cells made of small perfect crystals, rather than large, perfect silicon crystals that are more expensive to produce. Nanowhiskers are being experimented as new antireflective coating. Sensitizing dyes are being used to increase the range and location of the wavelengths that can be absorbed to be more favorable to sunlight, allowing the use of materials that lack this key characteristic. Quantum dots could be an improvement to these dyes, as the smaller particles will have the added benefit of having multiple electrons created per photon without impeding electron transfer. Recent research has also shown a method to transform optical radiation into electrical current that could lead to self-powering molecular circuits and efficient data storage. The many possible applications of nanotechnology make photovoltaic cells a promising pursuit.

References

1.
Trombly
,
J.
,
2004
, “
Technology Solutions: Nano-PV Set to Accelerate Solar-Energy Use
,”
Environ. Sci. Technol.
,
38
, pp.
376
376A
.10.1021/es040636g
2.
Kelsall
,
R. W.
,
Hamley
,
I. W.
, and
Geoghegan
,
M.
,
2005
,
Nanoscale Science and Technology
,
Wiley
,
London
, Chap. 6.
3.
Catchpole
,
K. R.
,
2006
, “
Nanostructures in Photovoltaics
,”
Philos. Trans. R. Soc.
364
, pp.
3493
3503
.10.1098/rsta.2006.1902
4.
Vogel
,
E. M.
,
2007
, “
Technology and Metrology of New Electronic Materials and Devices
,”
Nat. Nanotechnol.
2
, pp.
25
30
.10.1038/nnano.2006.142
5.
Lal
,
S.
,
Link
,
S.
, and
Halas
,
N. J.
,
2007
, “
Nano-Optics From Sensing to Waveguiding
,”
Nat. Photonics
,
1
, pp.
641
642
.10.1038/nphoton.2007.223
6.
Schaefer
,
H. E.
,
2010
,
Nanoscience: Nanoscience and Technology Series
,
Springer
,
New York
, Chap. 10.
7.
Tsakalakos
,
L.
,
2008
, “
Nanostructures for Photovoltaics
,”
Mater. Sci. Eng.
,
62
(
6
), pp.
175
189
.10.1016/j.mser.2008.06.002
8.
Varonides
,
A. C.
,
2004
, “
Tunneling Photoconductivity Computations of Multi-quantum Well p-i (nano)-n Photovoltaic Nanostructures by Mean of the Causal Green's Function
,”
Thin Solid Films
,
451–452
, pp.
393
396
.10.1016/j.tsf.2003.11.017
9.
Hoppe
,
H.
, and
Sariciftci
,
N. S.
,
2004
, “
Organic Solar Cells: An Overview
,”
J. Mater. Res.
,
19
(
7
), pp.
1924
1945
.10.1557/JMR.2004.0252
10.
Nozik
,
A. J.
,
Beard
,
M. C.
,
Luther
,
J. M.
,
Law
,
M.
,
Ellingson
,
R. J.
, and
Johnson
,
J. C.
,
2009
, “
Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells
,”
Chem. Rev.
,
110
(
11
), pp.
6873
6890
.10.1021/cr900289f
11.
Wang
,
Z.
,
Wang
,
Y.
,
Hu
,
N.
,
Wei
,
L.
,
Chen
,
S.
, and
Zhang
,
Y.
,
2010
, “
Polythiophene Microspheres Synthesized by Transition Metal Mediated Oxidative Dispersion Polymerization
,”
J. Polym. Sci. A: Polym. Chem.
,
48
, pp.
5265
5269
.10.1002/pola.24337
12.
Perlin
,
J.
,
2004
, “
History of Solar Energy
,”
Encyclopedia of Energy
,
C. J.
Cleveland
, ed.,
Elsevier
,
New York
, Vol.
5
, pp.
607
622
.
13.
Green
,
M.
,
2005
, “
Silicon Photovoltaic Modules: A Brief History of the First 50 Years
,”
Prog. Photovolt.
,
13
, pp.
447
455
.10.1002/pip.612
14.
Jadhav
,
M. V.
,
Todkar
,
A. S.
,
Gambhire
,
V. R.
, and
Sawant
,
S. Y.
,
2011
, “
Nanotechnology for Powerful Solar Energy
,”
Int. J. Adv. Biotechnol. Res.
,
2
, pp.
208
212
.
15.
Kapur
,
V. K.
,
1999
, “
Photovoltaics for the 21st Century
,”
Proceedings of the International Symposium, The Electrochemical Society
,
Seattle, WA
, pp.
99
101
.
16.
Hagfeldt
,
A.
, and
Gratzel
,
M.
,
2000
, “
Molecular Photovoltaics
,”
Acc. Chem. Res.
,
33
, pp.
269
277
.10.1021/ar980112j
17.
Honsberg
,
C. B.
,
Barnett
,
A. M.
, and
Kirkpatrick
,
D.
,
2006
, “
Nanostructured Solar Cells for High Efficiency Photovoltaics
,”
Proc. 4th World Conference on Photovoltaic Energy Conversion
, Hawaii, May 7–12.
18.
Luther
,
J. M.
,
Law
,
M.
,
Beard
,
M. C.
,
Song
,
Q.
,
Reese
,
M. O.
,
Ellingson
,
R. J.
, and
Nozik
,
A. J.
,
2008
, “
Schottky Solar Cells Based on Colloidal Nanocrystal Films
,”
Nano Lett.
,
8
(
10
), pp.
3488
3492
.10.1021/nl802476m
19.
Xia
,
Y.
,
Yang
,
P.
,
Sun
,
Y.
,
Wu
,
Y.
,
Mayers
,
B.
,
Gates
,
B.
,
Yin
,
Y.
,
Kim
,
F.
, and
Yan
,
H.
,
2003
, “
One-Dimensional Nanostructures: Synthesis, Characterization, and Applications
,”
Adv. Mater.
,
15
, pp.
353
389
.10.1002/adma.200390087
20.
Nozik
,
A. J.
,
2010
, “
Nanoscience and Nanostructures for Photovoltaics and Solar Fuels
,”
Nano Lett.
,
10
(
8
), pp.
2735
2741
.10.1021/nl102122x
21.
Shockley
,
W.
, and
Queisser
,
H. J. J.
,
1961
, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,”
Appl. Phys.
,
32
, pp.
510
519
.10.1063/1.1736034
22.
Green
,
M. A.
,
Emery
,
K.
, and
Hishikawa
,
K. W.
,
2009
, “
Solar Cell Efficiency Tables (version 34)
,”
Prog. Photovolt.
,
17
, pp.
320
–326.10.1002/pip.911
23.
Bude
,
J.
, and
Hess
,
K. J.
,
1992
, “Thresholds of Impact Ionization in Semiconductors,”
Appl. Phys.
,
72
, pp.
3554
–3562.10.1063/1.351434
24.
Jung
,
H. K.
,
Taniguchi
,
K.
, and
Hamaguchi
,
C.
,
1996
, “Impact Ionization Model for Full Band Monte Carlo Simulation in GaAs,”
J. Appl. Phys.
,
79
, pp.
2473
–2481.10.1063/1.361176
25.
Harrison
,
D.
,
Abram
,
R. A.
, and
Brand
,
S. J.
,
1999
, “Impact Ionization Rate Calculations in Wide Band Gap Semiconductors,”
Appl. Phys.
,
85
, pp.
8178
8186
.
26.
Sambur
,
J. B.
,
Novet
,
T.
, and
Parkinson
,
B. A.
,
2010
, “
Perspective of the Prospects of Carrier Multiplication Nanocrystal Solar Cell
,”
Science
,
330
, pp.
63
66
.10.1126/science.1191462
27.
Dincer
,
F.
,
2011
, “
The Analysis on Photovoltaic Electricity Generation Status, Potential and Policies of the Leading Countries in Solar Energy
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
713
720
.10.1016/j.rser.2010.09.026
28.
Xu
,
J.
,
2011
New ORNL Solar Cell Technology Cranks Up Efficiency
,
Oak Ridge National Laboratory
, Oak Ridge, TN.
29.
Tang
,
K. H.
,
Zhu
,
L.
,
Urban
,
V. S.
,
Collins
,
A. M.
,
Biswas
,
P.
, and
Blankenship
,
R. E.
,
2011
, “
Temperature and Ionic Strength Effects on the Chlorosome Light-Harvesting Antenna Complex
,”
Langmuir
,
27
(
8
), pp.
4816
4828
.10.1021/la104532b
30.
Goetzberger
,
A.
,
Hebling
,
C.
, and
Schock
,
H.
,
2003
, “
Photovoltaic Materials, History, Status and Outlook
,”
Mater. Sci. Eng. R: Rep.
,
40
, pp.
1
46
.10.1016/S0927-796X(02)00092-X
31.
Liou
,
H. M.
,
2010
, “
Overview of the Photovoltaic Technology Status and Perspective in Taiwan
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
1202
1215
.10.1016/j.rser.2009.11.018
32.
Kelzenberg
,
M. D.
,
Boettcher
,
S. W.
,
Petykiewicz
,
J. A.
,
Turner-Evans
,
D. B.
,
Putnam
,
M. C.
,
Warren
,
E. L.
,
Spurgeon
,
J. M.
,
Briggs
,
R. M.
,
Lewis
,
N. S.
, and
Atwater
,
H. A.
,
2010
, “
Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications
,”
Nature Mater.
,
9
, pp.
239
244
.10.1038/nmat2727
33.
Katz
,
E. A.
,
Faiman
,
D.
,
Tuladhar
,
S. M.
,
Shtutina
,
S.
,
Froumin
,
N.
,
Polak
,
M.
, and
Strzhemechny
,
Y.
,
2003
, “
Diffusion Process for Doping of C60 (fullerene) Thin Films
,”
Sol. Energy Mater. Sol. Cells
,
75
(
3–4
), pp.
421
426
.10.1016/S0927-0248(02)00191-5
34.
Hu
,
L.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Surface-Plasmon Enhanced Near-Bandgap Light Absorption in Silicon Photovoltaics
,”
Comput. Theor. Nanosci.
,
5
, pp.
2096
2101
.10.1166/jctn.2008.1103
35.
Niziol
,
J.
,
Gondek
,
E.
,
Danel
,
A.
, and
Sanetra
,
J.
,
2009
, “
Influence of Dispersed Core-Shell Nano-Sized Particles on P3OT Based Photovoltaic Device
,” in
ICTON Mediterranean Winter Conference, 2009, ICTON-MW, 2009
, pp.
1
4
.
36.
Kochergin
,
V.
,
Neely
,
L.
,
Jao
,
C. Y.
, and
Robinson
,
H. D.
,
2011
, “
Aluminum Plasmonic Nanostructures for Improved Absorption in Organic Photovoltaic Devices
,”
Org. Electron. Photon.
,
98
, p.
133305
.
37.
Segura
,
J. L.
,
Giacalone
,
F.
,
Gomez
,
R.
,
Martin
,
N.
,
Guildi
,
D. M.
,
Luo
,
C.
,
Swartz
,
A.
,
Riedel
,
I.
,
Chirvase
,
D.
,
Parisi
,
J.
,
Dyakonov
,
V.
,
Sariciftci
,
N. S.
, and
Padinger
,
F.
,
2005
, “
Design, Synthesis and Photovoltaic Properties of [60] Fullerene Based Molecular Materials
,”
Mater. Sci. Eng.
,
25
, pp.
835
842
.10.1016/j.msec.2005.06.017
38.
Crispin
,
X.
,
Comil
,
J.
,
Friedlein
,
R.
,
Okudaira
,
K. K.
,
Lemaur
,
V.
,
Crispin
,
A.
,
Kestemont
,
G.
,
Lehmann
,
M.
,
Fahlman
,
M.
,
Lazzaroni
,
R.
,
Geerts
,
Y.
,
Wendin
,
G.
,
Ueno
,
N.
,
Bredas
,
J. L.
, and
Salaneck
,
W. R.
,
2004
, “
Electronic Delocalization in Discotic Liquid Crystals: A Joint Experimental and Theoretical Study
,”
J. Am. Chem. Soc.
,
126
(
38
), pp.
11889
11899
.10.1021/ja048669j
39.
Fan
,
Z.
,
Ruebusch
,
D. J.
,
Rathore
,
A. A.
,
Kapadia
,
R.
,
Ergen
,
O.
,
Leu
,
P. W.
, and
Javey
,
A.
,
2009
, “
Challenges and Prospects of Nanopillar-Based Solar Cells
,”
Nano Res.
,
2
(
11
), pp.
829
843
.10.1007/s12274-009-9091-y
40.
Chen
,
H.
,
Fu
,
W.
,
Yang
,
H.
,
Sun
,
P.
,
Zhang
,
Y.
,
Wang
,
L.
,
Zhao
,
W.
,
Zhou
,
X.
,
Zhao
,
H.
,
Jing
,
Q.
,
Qi
,
X.
, and
Li
,
Y.
,
2010
, “
Photosensitization of TiO2 Nanorods With CdS Quantum Dots for Photovoltaic Devices
,”
Electrochim. Acta
,
56
, pp.
919
924
.10.1016/j.electacta.2010.10.003
41.
Akbayir
,
C.
,
Bulut
,
F.
,
Farrell
,
T.
,
Goldschmidt
,
A.
,
Guntner
,
R.
,
Kam
,
A. P.
,
Miclea
,
P.
,
Scherf
,
U.
,
Seekamp
,
J.
,
Solovyev
,
V. G.
, and
Torres
,
C. M. S.
,
2003
, “
Nanostructured Conjugated Polymeric Systems for Photovoltaic Applications
,”
Rev. Adv. Mater. Sci.
,
5
, pp.
205
210
.
42.
Alam
,
M. M.
, and
Jenekhe
,
S. A.
,
2004
, “
Efficient Solar Cell From Layered Nanostructures of Donor and Acceptor Conjugated Polymers
,”
Chem. Mater.
,
16
(
23
), pp.
4647
4656
.10.1021/cm0497069
43.
Dykstra
,
T.
,
Hennebicq
,
E.
,
Beljonne
,
D.
,
Gierschner
,
J.
,
Claudio
,
G.
,
Bittner
,
E. R.
,
Knoester
,
J.
, and
Scholes
,
G. D.
,
2009
, “
Conformational Disorder and Ultrafast Exciton Relaxation in ppv-Family Conjugated Polymers
,”
Phys. Chem.
,
113
(
3
), pp.
656
667
.
44.
Subarna
Banerjee
,
E. A.
,
2010
, “
Formation of Chelating Agent Driven Anodized TiO2 Nanotubular Membrane and Its Photovoltaic Application
,”
Nanotechnology
,
21
, p.
145201
.10.1088/0957-4484/21/14/145201
45.
Jadhav
,
M. V.
,
Todkar
,
A. S.
,
Gambhire
,
V. R.
, and
Sawant
,
S. Y.
,
2011
, “
Nanotechnology for Powerful Solar Energy
,”
Adv. Biotechnol. Res.
,
2
(
1
), pp.
208
212
.
46.
Camaco
,
R. E.
,
Morgan
,
A. R.
,
Flores
,
M. C.
,
McLeod
,
T. A.
,
Kumsomboone
,
V. S.
,
Mordecai
,
B. J.
,
Bhattacharjea
,
R.
,
Tong
,
W.
,
Wagner
,
B. K.
,
Flicker
,
J. D.
,
Turano
,
S. P.
, and
Ready
,
W. J.
,
2007
, “
Carbon Nanotube Arrays for Photovoltaic Applications
,”
Nanomater. Electron. Appl.
,
58
(
3
), pp.
39
42
.
47.
Yin
,
L.
,
Liu
,
H.
,
Ding
,
Y.
,
Lu
,
B.
, and
Fan
,
D.
,
2007
, “
Fabrication of 3D Micro-Structures in Polymer Photovoltaic Devices Based on Soft Nanoimprint Lithography Technology
,” in
International Nano-Optoelectronics Workshop, 2007, I-NOW’07
, pp.
300
301
.
48.
Chang
,
C. H.
,
Hsu
,
M. H.
,
Yu
,
P.
,
Kuo
,
H. C.
,
Chang
,
W. L.
, and
Sun
,
W. C.
,
2009
, “
Novel Indium-Tin-Oxide Nano-Whiskers for Enhanced Transmission of Surface-Textured Silicon Photovoltaic Cells
,” in
Photovoltaic Specialists Conference (PVSC), 34th IEEE
,
2009
, pp.
000540
000543
.
49.
Palaniappan
,
K.
,
Murphy
,
J. W.
,
Khanam
,
N.
,
Horvath
,
J.
,
Alshareef
,
H.
,
Quevedo-Lopez
,
M.
,
Biewer
,
M. C.
,
Park
,
S. Y.
,
Kim
,
M. J.
,
Gnade
,
B. E.
,
Stefan
, and
M. C.
,
2009
, “
Poly(3-hexylthiophene)-CdSe Quantum Dot Bulk Heterojunction Solar Cells: Influence of The Functional End-Group of the Polymer
,”
Macromolecules
,
42
, pp.
3845
3848
.10.1021/ma9006285
50.
Paci
,
I.
,
Johnson
,
J. C.
,
Chen
,
X.
,
Rana
,
G.
,
Popovic
,
D.
,
David
,
D. E.
,
Nozik
,
A. J.
,
Ratner
,
M. A.
, and
Michi
,
J.
,
2006
, “
Singlet Fission for Dye-Sensitized Solar Cells: Can a Suitable Sensitizer be Found?
”,
J. Am. Chem. Soc.
,
128
(
51
), pp.
16546
16553
.10.1021/ja063980h
51.
Xu
,
Z.
, and
Cotlet
,
M.
,
2011
, “
Quantum Dot-Bridge-Fullerene Heterodimers With Controlled Photoinduced Electron Transfer
,”
Angew. Chem. Int. Ed.
,
50
, pp.
1
6
.10.1002/anie.201006633
52.
Franchi
,
J. R.
,
2004
,
Energy: Technology and Directions for the Future
,
Academic Press
, Waltham, MA, pp.
1
491
.
53.
Reviewer:
Mokhatab
,
S.
,
2007
, “
Energy: Technology and Directions for the Future
,”
ASME J. Energy Resour. Technol.
,
129
, p.
79
.10.1115/1.2424966
54.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
, p.
032202
.10.1115/1.4006655
55.
Bousbaa
,
H.
,
Sary
,
A.
,
Tazerout
,
M.
, and
Liazid
,
A.
,
2012
, “
Investigations on a Compression Ignition Engine Using Animal Fats and Vegetable Oil as Fuels
,”
ASME J. Energy Resour. Technol.
134
, p.
022202
.10.1115/1.4005660
56.
Le
,
E.
,
Park
,
C.
, and
Hiibel
,
S.
,
2012
, “
Investigation of the Effect of Growth From Low to High Biomass Concentration Inside a Photobioreactor on Hydrodynamic Properties of Scenedesmus obliquus
,”
ASME J. Energy Resour. Technol.
134
, p.
011801
.10.1115/1.4005245
57.
Wang
,
W.
,
Roberts
,
W. L.
, and
Stikeleather
,
L. F.
,
2012
, “
Hydrocarbon Fuels From Gas Phase Decarboxylation of Hydrolyzed Free Fatty Acid
,”
ASME J. Energy Resour. Technol.
134
, p.
032203
.10.1115/1.4006867
58.
Shahid
,
M.
,
Bidin
,
N.
,
Mat
,
Y.
, and
Inayatullah
,
M.
,
2012
, “
Production and Enhancement of Hydrogen From Water: A Review
,”
ASME J. Energy Resour. Technol.
134
, p.
034002
.10.1115/1.4006432
59.
Khaliq
,
A.
, and
Trivedi
,
S. K.
,
2012
, “
Second Law Assessment of a Wet Ethanol Fuelled HCCI Engine Combined With Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
134
, p.
022201
.10.1115/1.4005698
60.
Obara
,
S.
,
2007
, “
The Exhaust Heat Use Plan When Connecting Solar Modules to a Fuel Cell Energy Network
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
18
28
.10.1115/1.2424962
You do not currently have access to this content.