Catalytic systems play an important role in hydrogen production via ethanol reforming. The effect of Ni loading on the characteristics and activities of Ni/Al2O3 catalysts used in pure ethanol steam reforming are not well-understood. Two series of catalysts with various Ni loadings (6, 8, 10, 12, and 20 wt. %) were prepared by impregnation (IMP) and precipitation (PT) methods and were tested in reforming reactions. The catalysts were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), temperature-programmed reduction (TPR), and scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM–EDAX). Powder XRD patterns of all the catalysts exhibited only NiO. Lower Ni loading catalysts were more efficient in H2 production, as evidenced by the finding that a 6 wt. % Ni catalyst, synthesized via the PT method, yielded 3.68 mol H2 per mol ethanol fed. The high surface area and small crystallite size of the low Ni loading catalysts resulted in sufficient dispersion and strong metal-support interactions, which closely related to the high activity of the 6 PT catalyst.

References

References
1.
Shahid
,
M.
,
Bidin
,
N.
,
Mat
,
Y.
, and
Ullah
,
M. I.
,
2012
, “
Production and Enhancement of Hydrogen From Water: A Review
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
034002
.10.1115/1.4006432
2.
Jangsawang
,
W.
,
Klimanek
,
A.
, and
Gupta
,
A. K.
,
2005
, “
Enhanced Yield of Hydrogen From Wastes Using High Temperature Steam Gasification
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
179
185
.10.1115/1.2134733
3.
Matas Güell
,
B.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.10.1115/1.4007660
4.
Bellido
,
J. D. A.
, and
Assaf
,
E. M.
,
2008
, “
Nickel Catalysts Supported on ZrO2, Y2O3-Stabilized ZrO2 and CaO-Stabilized ZrO2 for the Steam Reforming of Ethanol: Effect of the Support and Nickel Load
,”
J. Power Sources
,
177
(
1
), pp.
24
32
.10.1016/j.jpowsour.2007.11.006
5.
Chen
,
M.-N.
,
Zhang
,
D.-Y.
,
Thompson
,
L. T.
, and
Ma
,
Z.-F.
,
2011
, “
Catalytic Properties of Ag Promoted ZnO/Al2O3 Catalysts for Hydrogen Production by Steam Reforming of Ethanol
,”
Int. J. Hydrogen Energy
,
36
(
13
), pp.
7516
7522
.10.1016/j.ijhydene.2011.03.128
6.
Le Valant
,
A.
,
Garron
,
A.
,
Bion
,
N.
,
Duprez
,
D.
, and
Epron
,
F.
,
2011
, “
Effect of Higher Alcohols on the Performances of a 1%Rh/MgAl2O4/Al2O3 Catalyst for Hydrogen Production by Crude Bioethanol Steam Reforming
,”
Int. J. Hydrogen Energy
,
36
(
1
), pp.
311
318
.10.1016/j.ijhydene.2010.09.039
7.
Pérez-Hernández
,
R.
,
Gutiérrez-Martínez
,
A.
,
Palacios
,
J.
,
Vega-Hernández
,
M.
, and
Rodríguez-Lugo
,
V.
,
2011
, “
Hydrogen Production by Oxidative Steam Reforming of Methanol Over Ni/CeO2–ZrO2 Catalysts
,”
Int. J. Hydrogen Energy
,
36
(
11
), pp.
6601
6608
.10.1016/j.ijhydene.2011.02.064
8.
Profeti
,
L. P. R.
,
Ticianelli
,
E. A.
, and
Assaf
,
E. M.
,
2008
, “
Production of Hydrogen by Ethanol Steam Reforming on Co/Al2O3 Catalysts: Effect of Addition of Small Quantities of Noble Metals
,”
J. Power Sources
,
175
(
1
), pp.
482
489
.10.1016/j.jpowsour.2007.09.050
9.
Yu
,
C.-Y.
,
Lee
,
D.-W.
,
Park
,
S.-J.
,
Lee
,
K.-Y.
, and
Lee
,
K.-H.
,
2009
, “
Study on a Catalytic Membrane Reactor for Hydrogen Production From Ethanol Steam Reforming
,”
Int. J. Hydrogen Energy
,
34
(
7
), pp.
2947
2954
.10.1016/j.ijhydene.2009.01.039
10.
Ebshish
,
A.
,
Yaakob
,
Z.
,
Taufiq-Yap
,
Y.
,
Bshish
,
A.
, and
Shaibani
,
A.
,
2013
, “
Catalytic Steam Reforming of Glycerol over Cerium and Palladium-Based Catalysts for Hydrogen Production
,”
ASME J. Fuel Cell Sci. Technol.
,
10
, p.
021003
.10.1115/1.4023687
11.
Hong
,
H.
,
Liu
,
Q.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012601
.10.1115/1.3068336
12.
Bshish
,
A.
,
Yaakob
,
Z.
,
Narayanan
,
B.
,
Ramakrishnan
,
R.
, and
Ebshish
,
A.
,
2011
, “
Steam-Reforming of Ethanol for Hydrogen Production
,”
Chem. Pap.
,
65
(
3
), pp.
251
266
.10.2478/s11696-010-0100-0
13.
Ebshish
,
A.
,
Yaakob
,
Z.
,
Taufiq-Yap
,
Y. H.
,
Bshish
,
A.
, and
Tasirin
,
S. M.
,
2012
, “
Review of Hydrogen Production Via Glycerol Reforming
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
8
), pp.
1060
1075
.10.1177/0957650912464624
14.
Akande
,
A. J.
,
Idem
,
R. O.
, and
Dalai
,
A. K.
,
2005
, “
Synthesis, Characterization and Performance Evaluation of Ni/Al2O3 Catalysts for Reforming of Crude Ethanol for Hydrogen Production
,”
Appl. Catal., A
,
287
(
2
), pp.
159
175
.10.1016/j.apcata.2005.03.046
15.
Vellini
,
M.
, and
Tonziello
,
J.
,
2011
, “
Hydrogen Use in an Urban District: Energy and Environmental Comparisons
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
042601
.10.1115/1.4003032
16.
Ebshish
,
A. S.
,
Yaakob
,
Z.
,
Narayanan
,
B.
,
Bshish
,
A. M.
, and
Wan Daud
,
W. R.
,
2011
, “
The Activity of Ni-Based Catalysts on Steam Reforming of Glycerol for Hydrogen Production
,”
Int. J. Integr. Eng.
,
3
(
1
), pp. 5–8. Available at: http://penerbit.uthm.edu.my/ojs/index.php/ijie/article/viewFile/138/153
17.
Li
,
Z.
,
Hu
,
X.
,
Zhang
,
L.
,
Liu
,
S.
, and
Lu
,
G.
,
2012
, “
Steam Reforming of Acetic Acid Over Ni/ZrO2 Catalysts: Effects of Nickel Loading and Particle Size on Product Distribution and Coke Formation
,”
Appl. Catal., A
,
417–418
, pp.
281
289
.
18.
Ebshish
,
A.
,
Yaakob
,
Z.
,
Narayanan
,
B.
,
Bshish
,
A.
, and
Daud
,
W. R. W.
,
2012
, “
Steam Reforming of Glycerol Over Ni Supported Alumina Xerogel for Hydrogen Production
,”
Energy Procedia
,
18
, pp.
552
559
.10.1016/j.egypro.2012.05.067
19.
Kugai
,
J.
,
Subramani
,
V.
,
Song
,
C.
,
Engelhard
,
M. H.
, and
Chin
,
Y. H.
,
2006
, “
Effects of Nanocrystalline CeO2 Supports on the Properties and Performance of Ni-Rh Bimetallic Catalyst for Oxidative Steam Reforming of Ethanol
,”
J. Catal.
,
238
(
2
), pp.
430
440
.10.1016/j.jcat.2006.01.001
20.
Kugai
,
J.
,
Velu
,
S.
, and
Song
,
C.
,
2005
, “
Low-Temperature Reforming of Ethanol Over CeO2-Supported Ni-Rh Bimetallic Catalysts for Hydrogen Production
,”
Catal. Lett.
,
101
(
3–4
), pp.
255
264
.10.1007/s10562-005-4901-7
21.
Alberton
,
A. L.
,
Souza
,
M. M. V. M.
, and
Schmal
,
M.
,
2007
, “
Carbon Formation and Its Influence on Ethanol Steam Reforming Over Ni/Al2O3 Catalysts
,”
Catal. Today
,
123
(
1–4
), pp.
257
264
.10.1016/j.cattod.2007.01.062
22.
Fierro
,
V.
,
Akdim
,
O.
,
Provendier
,
H.
, and
Mirodatos
,
C.
,
2005
, “
Ethanol Oxidative Steam Reforming Over Ni-Based Catalysts
,”
J. Power Sources
,
145
(
2
), pp.
659
666
.10.1016/j.jpowsour.2005.02.041
23.
Garbarino
,
G.
,
Lagazzo
,
A.
,
Riani
,
P.
, and
Busca
,
G.
,
2013
, “
Steam Reforming of Ethanol–Phenol Mixture on Ni/Al2O3: Effect of Ni Loading and Sulphur Deactivation
,”
Appl. Catal.
, B,
129
, pp.
460
472
.10.1016/j.apcatb.2012.09.036
24.
Wang.
,
H.
,
Li.
,
Z.
, and
Tian.
,
S.
,
2003
, “
Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas
,”
J. Nat. Gas Chem.
,
12
, pp.
205
209
.
25.
Youssef
,
E. A.
,
Chowdhury
,
M. B. I.
,
Nakhla
,
G.
, and
Charpentier
,
P.
,
2010
, “
Effect of Nickel Loading on Hydrogen Production and Chemical Oxygen Demand (COD) Destruction From Glucose Oxidation and Gasification in Supercritical Water
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
5034
5042
.10.1016/j.ijhydene.2009.08.076
26.
Mariño
,
F. B.
,
Graciela
,
M.
,
Miguel
,
L.
,
2003
, “
Cu-Ni-K/γ-Al2O3 Supported Catalysts for Ethanol Steam Reforming: Formation of Hydrotalcite-Type Compounds as a Result of Metal-Support Interaction
,”
Appl. Catal., A
,
238
(
1
), pp.
41
54
.10.1016/S0926-860X(02)00113-8
27.
Soyal-Baltacıoğlu
,
F.
,
Aksoylu
,
A. E.
, and
Önsan
,
Z. I.
,
2008
, “
Steam Reforming of Ethanol Over Pt–Ni Catalysts
,”
Catal. Today
,
138
(
3–4
), pp.
183
186
.10.1016/j.cattod.2008.05.035
28.
Torres
,
J. A.
,
Llorca
,
J.
,
Casanovas
,
A.
,
Domínguez
,
M.
,
Salvadó
,
J.
, and
Montané
,
D.
,
2007
, “
Steam Reforming of Ethanol at Moderate Temperature: Multifactorial Design Analysis of Ni/La2O3-Al2O3, and Fe- and Mn-Promoted Co/ZnO Catalysts
,”
J. Power Sources
,
169
(
1
), pp.
158
166
.10.1016/j.jpowsour.2007.01.057
29.
Hernández
,
I. P.
,
Gochi-Ponce
,
Y.
,
Contreras Larios
,
J. L.
, and
Fernández
,
A. M.
,
2010
, “
Steam Reforming of Ethanol Over Nickel-Tungsten Catalyst
,”
Int. J. Hydrogen Energy
,
35
(
21
), pp.
12098
12104
.10.1016/j.ijhydene.2009.09.069
30.
Yang
,
Y.
,
Ma
,
J.
, and
Wu
,
F.
,
2006
, “
Production of Hydrogen by Steam Reforming of Ethanol Over a Ni/ZnO Catalyst
,”
Int. J. Hydrogen Energy
,
31
(
7
), pp.
877
882
.10.1016/j.ijhydene.2005.06.029
31.
Barroso
,
M. N.
,
Gomez
,
M. F.
,
Arrúa
,
L. A.
, and
Abello
,
M. C.
,
2006
, “
Hydrogen Production by Ethanol Reforming Over NiZnAl Catalysts
,”
Appl. Catal.
, A,
304
, pp.
116
123
.10.1016/j.apcata.2006.02.033
32.
Biswas
,
P.
, and
Kunzru
,
D.
,
2007
, “
Steam Reforming of Ethanol for Production of Hydrogen Over Ni/CeO–ZrO Catalyst: Effect of Support and Metal Loading
,”
Int. J. Hydrogen Energy
,
32
(
8
), pp.
969
980
.10.1016/j.ijhydene.2006.09.031
33.
Nguyen.
,
L. Q.
,
Abella
,
L. C.
,
Gallardoa.
,
S. M.
, and
Hinodeb.
,
H.
,
2008
, “
Effect of Nickel Loading on the Activity of Ni/ZrO2 for Methane Steam Reforming at Low Temperature
,”
React. Kinet. Catal. Lett.
,
93
(
2
), pp.
227
232
.10.1007/s11144-008-5253-2
34.
Wan
,
H.
,
Li
,
X.
,
Ji
,
S.
,
Huang
,
B.
,
Wang
,
K.
, and
Li
,
C.
,
2007
, “
Effect of Ni Loading and CexZri−xO2 Promoter on Ni-Based SBA-15 Catalysts for Steam Reforming of Methane
,”
J. Nat. Gas Chem.
,
16
(
2
), pp.
139
147
.10.1016/S1003-9953(07)60039-5
35.
Pierotti
,
R.
, and
Rouquerol
,
J.
,
1985
, “
Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity
,”
Pure Appl. Chem.
,
57
(
4
), pp.
603
619
.10.1351/pac198557040603
36.
Li
,
G.
,
Hu
,
L.
, and
Hill
,
J. M.
,
2006
, “
Comparison of Reducibility and Stability of Alumina-Supported Ni Catalysts Prepared by Impregnation and Co-precipitation
,”
Appl. Catal., A
,
301
(
1
), pp.
16
24
.10.1016/j.apcata.2005.11.013
37.
Roh
,
H.-S.
,
Jun
,
K.-W.
, and
Park
,
S.-E.
,
2003
, “
Methane-Reforming Reactions Over Ni/Ce-ZrO2/θ-Al2O3 Catalysts
,”
Appl. Catal., A
,
251
(
2
), pp.
275
283
.10.1016/S0926-860X(03)00359-4
38.
Wigmans
,
T.
, and
Moulijn
,
J. A.
,
1980
, “
Activity and Mechanism of CO Methanation on Activated Carbon-Supported Nickel
,”
J. Chem. Soc., Chem. Commun.
,
1980
(
4
), pp.
170
171
.10.1039/c39800000170
39.
Dewaele
,
O.
, and
Froment
,
G. F.
,
1999
, “
TAP Study of the Mechanism and Kinetics of the Adsorption and Combustion of Methane on Ni/Al2O3 and NiO/Al2O3
,”
J. Catal.
,
184
(
2
), pp.
499
513
.10.1006/jcat.1999.2473
40.
Rynkowski
,
J. M.
,
Paryjczak
,
T.
, and
Lenik
,
M.
,
1993
, “
On the Nature of Oxidic Nickel Phases in NiO/γ-Al2O3 Catalysts
,”
Appl. Catal. A
,
106
(
1
), pp.
73
82
.10.1016/0926-860X(93)80156-K
41.
Zieliński
,
J.
,
1982
, “
Morphology of Nickel/Alumina Catalysts
,”
J. Catal.
,
76
(
1
), pp.
157
163
.10.1016/0021-9517(82)90245-7
42.
Negrier
,
F.
,
Marceau
,
É.
,
Che
,
M.
, and
de Caro
,
D.
,
2003
, “
Role of Ethylenediamine in the Preparation of Alumina-Supported Ni Catalysts From [Ni(en)2 (H2O)2](NO3)2: From Solution Properties to Nickel Particles
,”
C. R. Chim.
,
6
(
2
), pp.
231
240
.10.1016/S1631-0748(03)00026-2
43.
Zhang
,
X.
,
Liu
,
J.
,
Jing
,
Y.
, and
Xie
,
Y.
,
2003
, “
Support Effects on the Catalytic Behavior of NiO/Al2O3 for Oxidative Dehydrogenation of Ethane to Ethylene
,”
Appl. Catal. A
,
240
(
1–2
), pp.
143
150
.10.1016/S0926-860X(02)00426-X
44.
Tsay
,
M.-T.
, and
Chang
,
F.-W.
,
2000
, “
Characterization of Rice Husk Ash-Supported Nickel Catalysts Prepared by Ion Exchange
,”
Appl. Catal. A
,
203
(
1
), pp.
15
22
.10.1016/S0926-860X(00)00464-6
You do not currently have access to this content.