An experimental investigation of methane fuel oxycombustion in a variable compression ratio, spark-ignited piston engine has been carried out. Compression ratio, spark-timing, and oxygen concentration sweeps were performed to determine peak performance conditions for operation with both wet and dry exhaust gas recirculation (EGR). Results illustrate that when operating under oxycombustion conditions an optimum oxygen concentration exists at which fuel-conversion efficiency is maximized. Maximum conversion efficiency was achieved with approximately 29% oxygen by volume in the intake for wet EGR, and approximately 32.5% oxygen by volume in the intake for dry EGR. All test conditions, including air, were able to operate at the engine's maximum compression ratio of 17 to 1 without significant knock limitations. Peak fuel-conversion efficiency under oxycombustion conditions was significantly reduced relative to methane-in-air operation, with wet EGR achieving 23.6%, dry EGR achieving 24.2% and methane-in-air achieving 31.4%. The reduced fuel-conversion efficiency of oxycombustion conditions relative to air was primarily due to the reduced ratio of specific heats of the EGR working fluids relative to nitrogen (air) working fluid.

References

References
1.
Damen
,
K.
,
van Troost
,
M.
,
Faaij
,
A.
, and
Turkenburg
,
W.
,
2006
, “
A Comparison of Electricity and Hydrogen Production Systems With CO2 Capture and Storage. Part A: Review and Selection of Promising Conversion and Capture Technologies
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
215
246
.10.1016/j.pecs.2005.11.005
2.
Metz
,
B.
,
Davidson
,
O.
,
de Coninck
,
H.
,
Loos
,
M.
, and
Meyer
,
L.
,
2005
, “
Carbon Dioxide Capture and Storage. Special Report 1, Intergovernmental Panel on Climate Change
,” Cambridge, MA.
3.
Mori
,
Y.
,
Masutani
,
S. M.
,
Nihous
,
G. C.
,
Vega
,
L. A.
, and
Kinoshita
,
C. M.
,
1992
, “
Pre-Combustion Removal of Carbon Dioxide From Natural Gas Power Plants and the Transition to Hydrogen Energy Systems
,”
ASME J. Energy Res. Technol.
,
114
(
3
), pp.
221
226
.10.1115/1.2905945
4.
Sanz
,
W.
,
Jericha
,
H.
,
Bauer
,
B.
, and
Göttlich
,
E.
,
2008
, “
Qualitative and Quantitative Comparison of Two Promising Oxy-Fuel Power Cycles for CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
031702
.10.1115/1.2800350
5.
Lin
,
W.
,
Huang
,
M.
,
He
,
H.
, and
Gu
,
A.
,
2009
, “
A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust
,”
ASME J. Energy Res. Technol.
,
131
(
4
), p.
042201
.10.1115/1.4000176
6.
Zhang
,
N.
, and
Lior
,
N.
,
2006
, “
Proposal and Analysis of a Novel Zero CO2 Emission Cycle With Liquid Natural Gas Cryogenic Exergy Utilization
,”
ASME J. Eng. Gas Turbines Power
,
128
, pp.
81
91
.10.1115/1.2031228
7.
Scheffknecht
,
G.
,
Al-Makhadmeh
,
L.
,
Schnell
,
U.
, and
Maier
,
J.
,
2011
, “
Oxy-Fuel Coal Combustion–A Review of the Current State-of-the-Art
,”
Int. J. Greenhouse Gas Control
,
5
, Supplement 1(
0
), pp.
S16
S35
.10.1016/j.ijggc.2011.05.020
8.
Bilger
,
R. W.
, and
Wu
,
Z.
,
2009
, “
Carbon Capture for Automobiles Using Internal Combustion Rankine Cycle Engines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
034502
.10.1115/1.3077657
9.
Gielen
,
D.
,
2003
, “
CO2 Removal in the Iron and Steel Industry
,”
Energy Convers. Manage.
,
44
(
7
), pp.
1027
1037
.10.1016/S0196-8904(02)00111-5
10.
Flower
,
D.
, and
Sanjayan
,
J.
,
2007
, “
Green House Gas Emissions Due to Concrete Manufacture
,”
Int. J. Life Cycle Assess.
,
12
, pp.
282
288
.
11.
Heddle
,
G.
,
Herzog
,
H.
, and
Klett
,
M.
,
2003
, “
The Economics of CO2 Storage
,” MIT Laboratory for Energy and the Environmnet, Cambridge, MA, Report MIT LFEE 2003-003 RP.
12.
Seo
,
J. G.
, and
Mamora
,
D. D.
,
2005
, “
Experimental and Simulation Studies of Sequestration of Supercritical Carbon Dioxide in Depleted Gas Reservoirs
,”
ASME J. Energy Res. Technol.
,
127
(
1
), pp.
1
6
.10.1115/1.1790538
13.
Kanniche
,
M.
,
Gros-Bonnivard
,
R.
,
Jaud
,
P.
,
Valle-Marcos
,
J.
,
Amann
,
J.-M.
, and
Bouallou
,
C.
,
2010
, “
Pre-Combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for CO2 Capture
,”
Appl. Therm. Eng.
,
30
(
1
), pp.
53
62
.10.1016/j.applthermaleng.2009.05.005
14.
Van Blarigan
,
A.
,
Seiser
,
R.
,
Chen
,
J.
,
Cattolica
,
R.
, and
Dibble
,
R.
,
2013
, “
Working Fluid Composition Effects on Methane Oxycombustion in an SI-Engine: EGR Vs. CO2
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2951
2958
.10.1016/j.proci.2012.05.012
15.
Yossefi
,
D.
,
Ashcroft
,
S.
,
Hacohen
,
J.
,
Belmont
,
M.
, and
Thorpe
,
I.
,
1995
, “
Combustion of Methane and Ethane With CO2 Replacing N2 as a Diluent. Modelling of Combined Effects of Detailed Chemical Kinetics and Thermal Properties on the Early Stages of Combustion
,”
Fuel
,
74
(
7
), pp.
1061
1071
.10.1016/0016-2361(95)00048-A
16.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.10.1016/S0010-2180(03)00019-1
17.
Mazas
,
A. N.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2010
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,” ASME Turbo Expo 2010, 30(GT2010-22512).
18.
Walton
,
S.
,
He
,
X.
,
Zigler
,
B.
, and
Wooldridge
,
M.
,
2007
, “
An Experimental Investigation of the Ignition Properties of Hydrogen and Carbon Monoxide Mixtures for Syngas Turbine Applications
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3147
3154
.10.1016/j.proci.2006.08.059
19.
Zhu
,
D.
,
Egolfopoulos
,
F.
, and
Law
,
C.
,
1989
, “
Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature
,”
Sym. (Int.) Combust., [Proc.]
,
22
(
1
), pp.
1537
1545
.10.1016/S0082-0784(89)80164-X
20.
Richards
,
G. A.
,
Casleton
,
K. H.
, and
Chorpening
,
B. T.
,
2005
, “
CO2 and H2O Diluted Oxy-Fuel Combustion for Zero-Emission Power
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
2
), pp.
121
126
.10.1243/095765005X5990
21.
Das
,
A. K.
,
Kumar
,
K.
, and
Sung
,
C.-J.
,
2011
, “
Laminar Flame Speeds of Moist Syngas Mixtures
,”
Combust. Flame
,
158
(
2
), pp.
345
353
.10.1016/j.combustflame.2010.09.004
22.
Seiser
,
R.
, and
Seshadri
,
K.
,
2005
, “
The Influence of Water on Extinction and Ignition of Hydrogen and Methane Flames
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
407
414
.10.1016/j.proci.2004.08.220
23.
Killingsworth
,
N. J.
,
Rapp
,
V. H.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
,
Chen
,
J.-Y.
, and
Dibble
,
R.
,
2011
, “
Increased Efficiency in SI Engine With Air Replaced by Oxygen in Argon Mixture
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3141
3149
.10.1016/j.proci.2010.07.035
24.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
25.
Woschni
,
G.
,
1967
, “
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE Trans.
, Paper No. 670931.
26.
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,” Joint Committee for Guides in Metrology, Technical Report No. JCGM 100:2008.
27.
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML
,
2008
, “
Evaluation of Measurement Data—Supplement 1 to the Guide to the Expression of Uncertainty in Measurement
,” Propagation of Distributions Using a Monte Carlo Method, Joint Committee for Guides in Metrology, Technical Report No. JCGM 101:2008.
You do not currently have access to this content.