Smart glass is such that its properties may be changed by application of a potential across it. The change in properties may be engineered to alter the amount of heat energy that can penetrate the glass which provides heating and cooling design options. Therein lies its potential in energy savings. Smart glass may be classified into three types: electrochromic, suspended particle, and polymer dispersed liquid crystal (PDLC). Each of these types has their own mechanisms, advantages, and disadvantages. Electrochromic smart glass is the most popular, currently it utilizes an electrochromic film with an ion storage layer and ion conductor placed between two transparent plates. The electrochromic film is usually made of tungsten oxide, owing to the electrochromic nature of transition metals. An electric potential initiates a redox reaction of the electrochromic film transitioning the color and the transparency of the smart glass. Suspended particle smart glass has needle shaped particles suspended within an organic gel placed between two electrodes. In its off state, the particles are randomly dispersed and have a low light transmittance. Once a voltage is applied, the needle particles will orient themselves to allow for light to pass through. PDLC smart glass works similarly to the suspended particle variety. However, in PDLC smart glass, the central layer is a liquid crystal placed within a polymer matrix between electrodes. Similar in behavior to the suspended particles, in the off position the liquid crystals are randomly dispersed and have low transmittance. With the application of a voltage, the liquid crystals orient themselves, thereby allowing for the transmittance of light. These different smart glasses have many different applications, but with one hindrance. The requirement of a voltage source is a major disadvantage which greatly complicates the overall installation and manufacturing processes. However, the integration of photovoltaic (PV) devices into smart glass technology has provided one solution. Photovoltaic films attached in the smart glass will provide the necessary voltage source. The photovoltaic film may even be designed to produce more voltage than needed. The use a photovoltaic smart glass system provides significant cost savings in regards to heating, cooling, lighting, and overall energy bills. Smart glass represents a technology with a great deal of potential to reduce energy demand. Action steps have been identified to propagate the popular use of smart glass.

References

1.
Mazurin
,
O. V.
,
2005
, “
Glass Properties: Compilation, Evaluation, and Prediction
,”
J. Non-Cryst. Solids
,
351
(
12–13
), pp.
1103
1112
.10.1016/j.jnoncrysol.2005.01.024
2.
Granqvist
,
C. G.
,
2005
, “
Electrochromic Devices
,”
J. Eur. Ceram. Soc.
,
25
(
12
), pp.
2907
2912
.10.1016/j.jeurceramsoc.2005.03.162
3.
Monk
,
P.
,
Mortimer
,
R. J.
, and
Rosseinsky
,
D. R.
,
2007
,
Electrochromism and Electrochromic Devices
,
Cambridge University Press
,
Cambridge
, UK.
4.
Granqvist
,
C. G.
,
Hultåker
,
A.
,
2002
, “
Transparent and Conducting ITO Films: New Developments and Applications
,”
Thin Solid Films
,
411
, pp.
1
5
.10.1016/S0040-6090(02)00163-3
5.
Mortimer
,
R. J.
, “
Electrochromic Materials
,”
Annu. Rev. Mater. Res.
,
41
, pp.
241
268
.10.1146/annurev-matsci-062910-100344
6.
Somani
,
P. R.
,
Radhakrishnan
,
S.
,
2003
, “
Electrochromic Materials and Devices: Present and Future
,”
Mater. Chem. Phys.
,
77
(
1
), pp.
117
133
.10.1016/S0254-0584(01)00575-2
7.
Lampert
,
C. M.
,
1993
, “
Optical Switching Technology for Glazings
,”
Thin Solid Films
,
236
(
1–2
), pp.
6
13
.10.1016/0040-6090(93)90633-Z
8.
Vergaz
,
R.
,
Sánchez-Pena
,
J.-M.
,
Barrios
,
D.
,
Vázquez
,
C.
,
2008
, “
Pedro Contreras-Lallana, Modelling and Electro-Optical Testing of Suspended Particle Devices
,”
Sol. Energy Mater. Sol. Cells
,
92
(
11
), pp.
1483
1487
.10.1016/j.solmat.2008.06.018
9.
“Liquid Crystal Glass”
Glazette.com. Glazette, November 16, 2012, http://www.glazette.com/Glass-Knowledge-Bank-70/Liquid-Crystal-Glass.html
10.
Coates
,
D.
,
1993
, “
Normal and Reverse Mode Polymer Dispersed Liquid Crystal Devices
,”
Displays
,
14
(
2
), pp.
94
103
.10.1016/0141-9382(93)90076-H
11.
Nicoletta
,
F. P.
,
2005
, “
Electrochromic Polymer-Dispersed Liquid-Crystal Film: A New Bifunctional Device
,”
Adv. Funct. Mater.
,
15
(
6
), pp.
995
999
.10.1002/adfm.200400403
12.
Lampert
,
C. M.
,
2003
, “
Large-Area Smart Glass and Integrated Photovoltaics
,”
Sol. Energy Mater. Sol. Cells
,”
76
(
4
), pp.
489
499
.10.1016/S0927-0248(02)00259-3
13.
Hack
,
M. G.
,
Weaver
,
M. S.
,
Mahon
,
J. K.
, and
Brown
,
J. J.
,
2001
, “
Recent Progress in Flexible OLED Displays
,” Proc. SPIE 4362, Cockpit Displays VIII: Displays for Defense Applications, 245, September 7.
14.
Huang
,
L.-M.
,
Hu
,
C.-W.
,
Liu
,
H.-C.
,
Hsu
,
C.-Y.
,
Chen
,
C.-H.
,
Ho
,
K.-C.
,
2012
, “
Photovoltaic Electrochromic Device for Solar Cell Module and Self-Powered Smart Glass Applications
,”
Sol. Energy Mater. Sol. Cells
,
99
, pp.
154
159
.10.1016/j.solmat.2011.03.036
15.
Deb
,
S. K.
,
Lee
,
S.-H.
,
Tracy
,
C. E.
,
Pitts
,
J. R.
,
Gregg
,
B. A.
, and
Branz
,
H. M.
,
2001
, “
Stand-Alone Photovoltaic-Powered Electrochromic Smart Window
,”
Electrochim. Acta
,
46
(
13–14
), pp.
2125
2130
.10.1016/S0013-4686(01)00390-5
16.
Verrengia
,
J.
,
2010
, “
Smart Windows: Energy Efficiency with a View
,” National Renewable Energy Laboratory, November 14, 2012, http://www.nrel.gov/news/features/feature_detail.cfm/feature_id=1555?print
17.
Lampert
,
C. M.
,
1994
, “
Towards Large-Area Photovoltaic Nanocells: Experiences Learned From Smart Window Technology
,”
Sol. Energy Mater. Sol. Cells
,
32
(
3
), pp.
307
321
.10.1016/0927-0248(94)90266-6
18.
Gabriel
,
K. M. A.
, and
Endlicher
,
W. R.
,
2011
, “
Urban and Rural Mortality Rates During Heat Waves in Berlin and Brandenburg, Germany
,”
Environ. Pollut.
,
159
, pp.
2044
2050
.10.1016/j.envpol.2011.01.016
19.
Wong
,
K. V.
,
Paddon
,
A.
, and
Jimenez
,
A.
,
2011
, “
Heat Island Effect Aggravates Mortality
,” ASME Paper No. IMECE2011-62785, pp.
1
15
.
20.
Wong
,
K. V.
, and
Chaudhry
,
S.
,
2012
, “
Use of Satellite Images for Observational and Quantitative Analysis of Urban Heat Islands Around the World
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042101
.10.1115/1.4007486
21.
Wong
,
K. V.
,
Dai
,
Y.
, and
Paul
,
B.
,
2012
, “
Anthropogenic Heat Release Into the Environment
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041602
.10.1115/1.4007360
22.
Wong
,
K. V.
,
Paddon
,
A.
, and
Jimenez
,
A.
,
2013
, “
Review of World Urban Heat Islands: Many Linked to Increased Mortality
,”
ASME J. Energy Resour. Technol.
,
135
, p.
022101
.10.1115/1.4023176
23.
Chang-qing
,
Y. E.
,
Rong-bo
,
X.
, and
Hao-yan
,
L.
,
2011
, “
Study of Urban Heat Island and Planning Strategies of Guangzhou City Based on RS and GIS
,”
Guangdong Landscape Archit.
,
2
, pp.
12
16
.
24.
Wei-guang
,
M.
,
Yan-xia
,
Z.
,
Jiang-nan
,
L.
,
Wen-shi
,
L.
,
Guang-feng
,
D.
, and
Hao-rui
,
L.
,
2010
, “
Application of WRF/UCM in the Simulation of a Heat Wave Event and Urban Heat Island Around Guangzhou City
,”
J. Trop. Meteorol.
,
3
, pp.
273
282
.
25.
Xiaobol
,
L.
,
Dan
,
C.
,
Minghao
,
L.
, and
Qiang
,
L.
,
2011
, “
Application Research on Monitor of Heat Island Effect in Chongqing Based on HJ-1B/IRS
,”
J. Geo-Inf. Sci.
,
6
, pp.
833
839
.
26.
Shang-ming
,
D.
,
Hai-feng
,
A.
,
Bo
,
D.
,
Hui-xi
,
X.
,
Ling
,
Y.
, and
Gang-yi
,
C.
,
2009
, “
An Analysis of Urban Heat Island Effects in Chongqing Based on AVHRR and DEM
,”
Resour. Environ. Yangtze Basin
,
7
, pp.
680
685
.
27.
Bose
,
P. K.
, and
Banerjee
,
R.
,
2012
, “
An Experimental Investigation on the Role of Hydrogen in the Emission Reduction and Performance Trade-Off Studies in an Existing Diesel Engine Operating in Dual Fuel Mode Under Exhaust Gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
134
, p.
012601
.10.1115/1.4005246
28.
Singh
,
B.
,
Kaur
,
J.
, and
Singh
,
K.
,
2010
, “
Production of Biodiesel From Used Mustard Oil and Its Performance Analysis in Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
132
, p.
031001
.10.1115/1.4002203
29.
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Optimization for Electric Hybrid Vehicles
,”
ASME J. Energy Resour. Technol.
,
131
, p.
012203
.10.1115/1.3068347
30.
Dincer
,
I.
,
2002
, “
Technical, Environmental and Exergetic Aspects of Hydrogen Energy Systems
,”
Int. J. Hydrogen Energy
,
27
(
3
), pp.
265
285
.10.1016/S0360-3199(01)00119-7
31.
Xiong
,
Q.
,
Li
,
B.
,
Xua
,
J.
,
Wang
,
X.
,
Wang
,
L.
, and
Ge
,
W.
,
2012
, “
Efficient 3D DNS of Gas–Solid Flows on Fermi GPGPU
,”
Comput. Fluids
,
70
, pp.
86
94
.10.1016/j.compfluid.2012.08.026
32.
Xiong
,
Q.
,
Li
,
B.
,
Chen
,
F.
,
Ma
,
J.
,
Ge
,
W.
, and
Li
,
J.
,
2010
, “
Direct Numerical Simulation of Sub-Grid Structures in Gas–Solid Flow—GPU Implementation of Macro-Scale Pseudoparticle Modeling
,”
Chem. Eng. Sci.
,
65
, pp.
5356
5365
.10.1016/j.ces.2010.06.035
33.
Xiong
,
Q.
,
Li
,
B.
,
Zhou
,
G.
,
Fang
,
X.
,
Xu
,
J.
,
Wang
,
J.
,
He
,
X.
,
Wang
,
X.
,
Wang
,
L.
,
Ge
,
W.
, and
Li
,
J.
,
2012
, “
Large-Scale DNS of Gas–Solid Flows on Mole-8.5
,”
Chem. Eng. Sci.
,
71
, pp.
422
430
.10.1016/j.ces.2011.10.059
34.
Ma
,
J.
,
Ge
,
W.
,
Xiong
,
Q.
,
Wang
,
J.
, and
Li
,
J.
,
2009
, “
Direct Numerical Simulation of Particle Clustering in Gas–Solid Flow With a Macro-Scale Particle Method
,”
Chem. Eng. Sci.
,
64
, pp.
43
51
.10.1016/j.ces.2008.09.005
35.
Xiong
,
Q.
,
Li
,
B.
,
Chen
,
F.
,
Ma
,
J.
,
Ge
,
W.
, and
Li
,
J.
,
2010
, “
Direct Numerical Simulation of Sub-Grid Structures in Gas-Solid Flow-GPU Implementation of Macro-Scale Pseudo-Particle Modeling
,”
Chem. Eng. Sci.
,
65
, pp.
5356
5365
.10.1016/j.ces.2010.06.035
36.
Xiong
,
Q.
,
Deng
,
L.
,
Wang
,
W.
, and
Ge
,
W.
,
2011
, “
SPH Method for Two-Fluid Modeling of Particle–Fluid Fluidization
,”
Chem. Eng. Sci.
,
66
, pp.
1859
1865
.10.1016/j.ces.2011.01.033
37.
Xiong
,
Q.
,
Li
,
B.
, and
Xu
,
J.
,
2013
, “
GPU-Accelerated Adaptive Particle Splitting and Merging in SPH
,”
Comput. Phys. Commun.
,
184
, pp.
1701
1707
.10.1016/j.cpc.2013.02.021
38.
Ge
,
W.
,
Wang
,
W.
,
Yang
,
N.
,
Li
,
J.
,
Kwauk
,
M.
,
Chen
,
F.
,
Chen
,
J.
,
Fang
,
X.
,
Guo
,
L.
,
He
,
X.
,
Liu
,
X.
,
Liu
,
Y.
,
Lu
,
B.
,
Wang
,
J.
,
Wang
,
J.
,
Wang
,
L.
,
Wang
,
X.
,
Xiong
,
Q.
,
Xu
,
M.
,
Deng
,
L.
,
Han
,
Y.
,
Hou
,
C.
,
Hua
,
L.
,
Huang
,
W.
,
Li
,
B.
,
Li
,
C.
,
Li
,
F.
,
Ren
,
Y.
,
Xu
,
J.
,
Zhang
,
N.
,
Zhang
,
Y.
,
Zhou
,
G.
, and
Zhou
,
G.
,
2011
, “
Meso-Scale Oriented Simulation Towards Virtual Process Engineering (VPE)-The EMMS Paradigm
,”
Chem. Eng. Sci.
,
66
, pp.
4426
4458
.10.1016/j.ces.2011.05.029
You do not currently have access to this content.