This paper presents the results of the application of an advanced thermodynamic model developed by the authors for the simulation of Organic Rankine Cycles (ORCs). The model allows ORC simulation both for steady and transient analysis. The expander, selected to be a scroll expander, is modeled in detail by decomposing the behavior of the fluid stream into several steps. The energy source is coupled with the system through a plate heat exchanger (PHE), which is modeled using an iterative sub-heat exchanger modeling approach. The considered ORC system uses solar thermal energy for ultralow grade thermal energy recovery. The simulation model is used to investigate the influence of ORC characteristic parameters related to the working medium, hot reservoir and component efficiencies for the purpose of optimizing the ORC system efficiency and power output. Moreover, dynamic response of the ORC is also evaluated for two scenarios, i.e. (i) supplying electricity for a typical residential user and (ii) being driven by a hot reservoir. Finally, the simulation model is used to evaluate ORC capability to meet electric, thermal and cooling loads of a single residential building, for typical temperatures of the hot water exiting from a solar collector.

References

References
1.
Hung
,
T. C.
,
Shai
,
T. Y.
, and
Wang
,
S. K.
,
1997
, “
A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low Grade Waste Heat
,”
Energy
,
22
, pp.
661
667
.10.1016/S0360-5442(96)00165-X
2.
Barbier
,
E.
,
2002
, “
Geothermal Energy Technology and Current Status: An Overview
,”
Renewable Sustainable Energy Rev.
,
6
, pp.
3
65
.10.1016/S1364-0321(02)00002-3
3.
Hettiarachchi
,
H. D.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
,
2007
, “
Optimum Design Criteria for an Organic Rankine Cycle Using Low Temperature Geothermal Heat Sources
,”
Energy
,
32
, pp.
1698
1706
.10.1016/j.energy.2007.01.005
4.
Kane
,
M.
,
Larrain
,
D.
,
Favrat
,
D.
, and
Allani
,
Y.
,
2008
, “
Small Hybrid Solar Power Systems
,”
Energy
,
28
, pp.
1427
1443
.10.1016/S0360-5442(03)00127-0
5.
Malavolta
,
M.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2010
, “
Experimental Implementation of a Micro-Scale ORC Based CHP Energy System for Domestic Applications
,” ASME Paper No. IMECE2010-37208.
6.
Chen
,
H.
,
Goswami
,
D. Y.
,
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
3059
3067
.10.1016/j.rser.2010.07.006
7.
Husband
,
W. W.
, and
Beyene
,
A.
,
2008
, “
Feasibility Study of Low Grade Heat Recovery Rankine Cycle Using Ozone-Neutral Refrigerant
,” ASME Paper No. GT2008-51537.
8.
Husband
W. W.
, and
Beyene
A.
,
2008
, “
Low Grade Heat Driven Rankine Cycle, a Feasibility Study
,”
Int. J. Energy Res.
,
32
(
15
), pp.
1373
1382
.10.1002/er.1442
9.
Manolakos
,
D.
,
Kosmadakis
,
G.
,
Kyritsis
,
S.
, and
Papadakis
,
G.
,
2009
, “
Identification of Behavior and Evaluation of Performance of Small Scale, Low-Temperature Organic Rankine Cycle System Coupled With a RO Desalination Unit
,”
Energy
,
34
, pp.
767
774
.10.1016/j.energy.2009.02.008
10.
Mago
,
P. J.
,
Chamra
,
L. M.
, and
Somayaji
,
C.
,
2007
, “
Performance Analysis of Different Working Fluids for Use in Organic Rankine Cycles
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
221
, pp.
255
263
.10.1243/09576509JPE372
11.
Fankam
,
B. T.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
, pp.
2468
2476
.10.1016/j.applthermaleng.2008.12.025
12.
Liu
,
B. T.
,
Chien
,
K. H.
, and
Wang
,
C. C.
,
2004
, “
Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery
,”
Energy
,
29
, pp.
1207
1217
.10.1016/j.energy.2004.01.004
13.
Maizza
,
V.
, and
Maizza
,
A.
,
2001
, “
Unconventional Working Fluids in Organic Rankine Cycles for Waste Energy Recovery Systems
,”
Appl. Therm. Eng.
,
21
, pp.
381
390
.10.1016/S1359-4311(00)00044-2
14.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
3059
3067
.10.1016/j.rser.2010.07.006
15.
Wei
,
D.
,
Lu
,
X.
,
Lu
,
Z.
, and
Gu
,
J.
,
2007
, “
Performance Analysis and Optimization of Organic Rankine Cycle (ORC) for Waste Heat Recovery
,”
Energy Convers. Manage.
,
48
, pp.
1113
1119
.10.1016/j.enconman.2006.10.020
16.
Hung
,
T. C.
,
2001
, “
Waste Heat Recovery of Organic Rankine Cycle Using Dry Fluids
,”
Energy Convers. Manage.
,
42
, pp.
539
553
.10.1016/S0196-8904(00)00081-9
17.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery
,”
Energy Convers. Manage.
,
50
, pp.
576
582
.10.1016/j.enconman.2008.10.018
18.
Yamamoto
,
T.
,
Furuhata
,
T.
,
Arai
,
N.
, and
Mori
,
K.
,
2001
, “
Design and Testing of the Organic Rankine Cycle
,”
Energy
,
26
, pp.
239
251
.10.1016/S0360-5442(00)00063-3
19.
Tahir
,
M.
, and
Yamada
,
N.
,
2009
, “
Characteristics of Small ORC System for Low Temperature Waste Heat Recovery
,”
J. Environ. Eng.
,
4
, pp.
375
385
.10.1299/jee.4.375
20.
Kuhn
,
V.
,
Klemes
,
J.
, and
Bulatov
,
I.
,
2008
, “
Micro CHP: Overview of Selected Technologies, Products and Fields Test Results
,”
Appl. Thermal Eng.
,
28
, pp.
2039
2048
.10.1016/j.applthermaleng.2008.02.003
21.
Ozalp
,
N.
,
2009
, “
Utilization of Heat, Power and Recovered Waste Heat for Industrial Processes in the U.S. Chemical Industry
,”
ASME J. Energy Resour. Technol.
,
131
, p.
022401
.10.1115/1.3120382
22.
Schuster
,
A.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Spliethoff
,
H.
,
2009
, “
Energetic and Economic Investigation of Organic Rankine Cycle Applications
,”
Appl. Therm. Eng.
,
29
, pp.
1809
1817
.10.1016/j.applthermaleng.2008.08.016
23.
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
, p.
032001
.10.1115/1.4006434
24.
Demirkaya
,
G.
,
Besarati
,
S.
, and
Padilla
,
R. V.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
, p.
032002
.10.1115/1.4005922
25.
Srinivasan
,
K. K.
,
Mago
,
P. J.
,
Zdaniuk
,
G. J.
,
Chamra
,
L. M.
, and
Midkiff
,
K. C.
,
2008
, “
Improving the Efficiency of the Advanced Injection Low Pilot Ignited Natural Gas Engine Using Organic Rankine Cycles
,”
ASME J. Energy Resour. Technol.
,
130
, p.
022201
.10.1115/1.2906123
26.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
, p.
022402
.10.1115/1.3120381
27.
Mathias
,
J. A.
,
Johnston
,
J. R.
,
Cao
,
J.
,
Priedeman
,
D. K.
, and
Christensen
,
R. N.
,
2009
, “
Experimental Testing of Gerotor and Scroll Expanders Used in, and Energetic and Exergetic Modeling of an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
131
, p.
012201
.10.1115/1.3066345
28.
Khaliq
,
A.
, and
Trivedi
,
S. K.
,
2012
, “
Second Law Assessment of a Wet Ethanol Fuelled HCCI Engine Combined With Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
134
, p.
022201
.10.1115/1.4005698
29.
Boza
,
J. J.
,
Lear
,
W. E.
, and
Sherif
,
S. A.
,
2008
, “
Performance of a Novel Semiclosed Gas-Turbine Refrigeration Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
130
, p.
022401
.10.1115/1.2906034
30.
Malhotra
,
V.
,
Lear
,
W. E.
,
Khan
,
J. R.
, and
Sherif
,
S. A.
,
2010
, “
Life Cycle Cost Analysis of a Novel Cooling and Power Gas Turbine Engine
,”
ASME J. Energy Resour. Technol.
,
132
, p.
042401
.10.1115/1.4003075
31.
Ryu
,
C.
,
Tiffany
,
D. R.
,
Crittenden
,
J. F.
,
Lear
,
W. E.
, and
Sherif
,
S. A.
,
2010
, “
Dynamic Modeling of a Novel Cooling, Heat, Power, and Water Microturbine Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
132
, p.
021006
.10.1115/1.4001567
32.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Smith
,
A.
,
2012
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
, p.
011301
.10.1115/1.4005082
33.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2012
, “
Development of an Advanced Simulation Model for ORC-Based Systems
,”
Proceedings of ASME IMECE 2012, November 9–15
,
Houston, Texas
, ASME Paper No. IMECE2012-85734.
34.
Raluy
,
G.
,
Serra
,
L.
, and
Uche
,
J.
,
2006
, “
Life Cycle Assessment of MSF, MED and RO Desalination Technologies
,”
Energy
,
31
, pp.
2361
2372
.10.1016/j.energy.2006.02.005
35.
Delgado-Torres
,
A. M.
, and
Garcia-Rodriguez
,
L.
,
2010
, “
Analysis and Optimization of the Low Temperature Solar Organic Rankine Cycle (ORC)
,”
Energy Convers. Manage.
,
51
, pp.
2846
2856
.10.1016/j.enconman.2010.06.022
36.
Shuster
,
A.
,
Karellas
,
S.
, and
Karl
,
J.
,
2005
, “
Simulation of an Innovative Stand-Alone Solar Desalination System With an Organic Rankine Cycle
,”
SIMS 2005, 46th Conference on Simulation and Modeling
,
Trondheim, Norway
, Oct. 13–14.
37.
Manolakos
,
D.
,
Papadakis
,
G.
,
Essam
Sh
.
Mohamed, Kyritsis
,
S.
, and
Bouzianas
,
K.
,
2005
, “
Design of Autonomous Low Temperature Solar Rankine Cycle System for Reverse Osmosis Desalination
,”
Desalination
,
183
, pp.
73
80
.10.1016/j.desal.2005.02.044
38.
Colpan
,
C. O.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2008
, “
A Review on Macro-Level Modeling of Planar Solid Oxide Fuel Cells
,”
Int. J. Energy Res.
,
32
, pp.
336
355
.10.1002/er.1363
39.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2010
, “
Exergy Analysis of an Internal Integrated Solid Oxide Fuel Cell and Organic Rankine Cycle for Cooling Heating and Power Production
,”
J. Power Sources
,
195
, pp.
2345
2354
.10.1016/j.jpowsour.2009.10.075
40.
Verda
,
V.
,
2008
, “
Solid Oxide Fuel Cell System Configurations for Distributed Generation
,”
ASME J. Fuel Cell Sci. Technol.
,
5
, p.
041001
.10.1115/1.2971017
41.
Akkaya
,
A. V.
, and
Sahin
,
B.
,
2009
, “
A Study on Performance of Solid Oxide Fuel Cell—Organic Rankine Cycle Combined System
,”
Int. J. Energy Res.
,
33
, pp.
553
564
.10.1002/er.1490
42.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2010
, “
Energy Analysis of Trigeneration Plant Based on Solid Oxide Fuel Cell and ORC
,”
Int. J. Hydrogen Energy
,
35
, pp.
5104
5113
.10.1016/j.ijhydene.2009.09.047
43.
Lennard
,
D. E.
,
1995
, “
The viability and the Best Locations for Ocean Thermal Energy Conversion Systems Around the World
,”
Renewable Energy
,
6
, pp.
359
365
.10.1016/0960-1481(95)00023-D
44.
Uehara
,
H.
,
Ikegami
,
Y.
,
Mitsumori
,
T.
,
Sasaki
,
K.
, and
Nagami
,
R.
,
1999
, “
The Experimental Research on Ocean Thermal Energy Conversions Using Uehara Cycle
,”
Procedings of International OTEC/DOWA Conference
,
Imari, Japan
, pp.
132
141
.
45.
Wang
,
S. K.
, and
Hung
,
T. C.
,
2010
, “
Renewable Energy From the Sea ORC Using Ocean Thermal Energy Conversion
,”
PEA-AIT International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010)
, June 2–4,
Chiang Mai, Thailand
.
46.
47.
Energetix Report
—Genlec 1 kW micro-Organic Rankine Cycle (2010).
48.
COGEN Microsystems
http://www.cogenmicro.com/
49.
Quoilin
,
S.
,
Lemort
,
V.
, and
Lebrun
,
J.
,
2010
, “
Experimental Study and Modeling of an Organic Rankine Cycle Using Scroll Expander
,”
Appl. Energy
,
87
, pp.
1260
1268
.10.1016/j.apenergy.2009.06.026
50.
Brasz
,
L. J.
, and
Bilbow
,
W. M.
,
2004
, “
Ranking of Working Fluids for Organic Rankine Cycle Applications
,”
Proceedings of International Refrigeration Engineering Conference
, Paper No. R068.
51.
Brasz
,
L. J.
,
2008
, “
Assessment of C6F as Working Fluid for Organic Rankine Cycle Applications
,”
Proceedings of International Refrigeration Engineering Conference
, Paper No. 2342.
52.
Angelino
,
G.
, and
Colonna di Paliano
,
P.
,
1998
, “
Multicomponent Working Fluids for Organic Rankine Cycles (ORCs)
,”
Energy
,
23
, pp.
449
463
.10.1016/S0360-5442(98)00009-7
53.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
, PP.
3059
3067
.10.1016/j.rser.2010.07.006
54.
Facao
,
J.
,
Palmero-Marrero
,
A.
, AND
Oliveira
,
A. C.
,
2008
, “
Preliminary Thermal Analysis of a Solar Assisted Micro-Cogeneration System
,”
SET2008—7th International Conference on Sustainable Energy Technologies
,
Seoul, South Korea
, August 24–27.
55.
Quoilin
,
S.
,
2011
, “
Sustainable Energy Conversion Through the Use of Organic Rankine Cycles for Waste Heat Recovery and Solar Applications
,” Ph.D. thesis in Applied Sciences, University of Liège, Belgium.
56.
Quoilin
,
S.
,
Orosz
,
M.
,
Hemond
,
H.
, and
Lemort
,
V.
,
2011
, “
Performance and Design Optimization of a Low-Cost Solar Organic Rankine Cycle for Remote Power Generation
,”
Sol. Energy
,
85
, pp.
955
966
.10.1016/j.solener.2011.02.010
57.
Pei
,
G.
,
Li
,
J.
, and
Ji
,
J.
,
2010
, “
Analysis of Low Temperature Solar Thermal Electric Generation Using Regenerative Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
30
, pp.
998
1004
.10.1016/j.applthermaleng.2010.01.011
58.
Saitoh
,
T.
,
Yamada
,
N.
, and
Wakoshima
,
S.
,
2007
, “
Solar Rankine Cycle System Using Scroll Expander
,”
J. Environ. Eng.
,
2
, pp.
708
719
.10.1299/jee.2.708
59.
LMS Engineering Innovation
—LMS Imagine.Lab AMESim http://www.lmsintl.com/
60.
Lakshamanan
,
C. C.
, and
Potter
,
O. E.
,
1990
, “
Dynamic Simulation of a Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
33
(
5
), pp.
995
1002
.10.1016/0017-9310(90)90080-E
61.
Zaleski
,
T.
, and
Klepacka
,
K.
,
1992
, “
Approximate Methods of Solving for Plate Heat-Exchangers
,”
Int. J., Heat Mass Transfer
,
35
, pp.
1125
1130
.10.1016/0017-9310(92)90173-P
62.
Lemort
,
V.
,
Quoilin
,
S.
, and
Lebrun
,
J.
,
2008
, “
Numerical Simulation of a Scroll Expander for Use in a Rankine Cycle
,”
Proceedings of 19th International Compressor Engineering Conference at Purdue University
,
West Lafayette, IN
, Paper No. 1324.
63.
Lemort
,
V.
,
Quoilin
,
S.
,
Cuevas
,
C.
, and
Lebrun
,
J.
,
2009
, “
Testing and Modeling a Scroll Expander Integrated Into an Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
, pp.
3094
3102
.10.1016/j.applthermaleng.2009.04.013
64.
Quoilin
,
S.
,
Lemort
,
V.
, and
Lebrun
,
J.
,
2010
, “
Experimental Study and Modeling of an Organic Rankine Cycle Using Scroll Expander
,”
Appl. Energy
,
87
, pp.
1260
1268
.10.1016/j.apenergy.2009.06.026
65.
Cruckshank
,
C. A.
,
2011
, “
Solar Thermal Collectors and Thermal Storage
,” Montreal Ph.D. Summer Workshop on Net-Zero Energy Solar Buildings: Theory, Modelling and Design, June 24.
66.
Qiu
,
G.
,
Liu
,
H.
, and
Riffat
,
S.
,
2011
, “
Expanders for Micro-CHP Systems With Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
31
, pp.
3301
3307
.10.1016/j.applthermaleng.2011.06.008
67.
Clemente
,
S.
,
Micheli
,
D.
,
Reini
,
M.
, and
Taccani
,
R.
, 2012, “
Energy Efficiency Analysis of Organic Rankine Cycles With Scroll Expanders for Cogenerative Applications
,”
Appl. Energy
, 97, pp. 792–801.10.1016/j.apenergy.2012.01.029
68.
Mago
,
P. J.
,
Chamra
,
L. M.
,
Srinivasan
,
K.
, and
Somayaji
,
C.
,
2008
, “
An Examination of Regenerative Organic Rankine Cycles Using Dry Fluids
,”
Appl. Therm. Eng.
,
28
, pp.
998
1007
.10.1016/j.applthermaleng.2007.06.025
69.
Wang
,
X. D.
,
Zhao
,
L.
,
Wang
,
J. L.
,
Zhang
,
W. Z.
,
Zhao
,
X. Z.
, and
Wu
,
W.
,
2010
, “
Performance Evaluation of a Low-Temperature Solar Rankine Cycle System Utilizing R245fa
,”
Sol. Energy
,
84
, pp.
353
364
.10.1016/j.solener.2009.11.004
70.
Wei
,
D.
,
Lu
,
X.
,
Lu
,
Z.
, and
Gu
,
J.
,
2008
, “
Dynamic Modeling and Simulation of an Organic Rankine Cycle (ORC) System for Waste Heat Recovery
,”
Appl. Therm. Eng.
,
28
, pp.
1216
1224
.10.1016/j.applthermaleng.2007.07.019
71.
Vaja
,
I.
,
2009
, “
Definition of an Object Oriented Library for the Dynamic Simulation of Advanced Energy Systems: Methodologies, Tools and Application to Combined ICE-ORC Power Plant
,” Ph.D. thesis in Industrial Engineering, University of Parma, Italy.
72.
Quoilin
,
S.
,
Aumann
,
R.
,
Grill
,
A.
,
Shuster
,
A.
,
Lemort
,
V.
, and
Spliethoff
,
H.
,
2011
, “
Dynamic Modeling and Optimal Control Strategy of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Energy
,
88
, pp.
2183
2190
.10.1016/j.apenergy.2011.01.015
73.
Olivares
,
A.
,
Rekstad
,
J.
,
Meir
,
M.
,
Kahlen
,
S.
, and
Wallner
,
G.
,
2010
, “
Degradation Model for an Extruded Polymeric Solar Thermal Absorber
,”
Sol. Energy Mater. Sol. Cells
,
94
, pp.
1031
1037
.10.1016/j.solmat.2010.02.001
74.
Barbieri
,
E. S.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2012
, “
Analysis of Innovative Micro-CHP Systems to Meet Household Energy Demands
,”
Appl. Energy
,
97
, pp.
723
733
.10.1016/j.apenergy.2011.11.081
75.
Soteris
,
A.
,
Kalogiru
, and
Papamarcou
,
C.
,
2000
, “
Modelling of a Thermosyphon Solar Water Heating System and Simple Model Validation
,”
Renewable Energy
,
21
, pp.
471
493
.10.1016/S0960-1481(00)00086-0
You do not currently have access to this content.