Distributed combustion has been shown to provide significantly improved performance with near zero emissions for stationary gas turbine applications. Characteristics of distributed combustion include uniform thermal field in the entire combustion chamber (improved pattern factor), ultra-low emissions of NOx and CO, low noise, enhanced stability, and higher efficiency. Distributed combustion with swirl have been investigated to determine the beneficial aspects of such flows on clean and efficient combustion under simulated gas turbine combustion conditions with ultra-low NOx emissions. Results are presented here on the impact of employing dual injection of air and fuel in contrast to single injection. Dual and multi-injection is of great importance for combustor design scale up as to maintain flow similarities. Results showed that careful implementation of dual injection can result in emissions as low as single air/fuel injection method. With adequate fuel injection strategy, further reduction in emissions has been demonstrated. Results obtained on pollutants emission with dual injection and different fuel injection strategies at various equivalence ratios showed ultra-low emission (<5 PPM NO and <15 PPM CO) and high performance. OH* chemiluminescence revealed relative position of the flame within the combustor under various conditions for further improvements in distributed combustion conditions and to further reduce NOx emission.

References

References
1.
Tsuji
,
H.
,
Gupta
,
A. K.
,
Hasegawa
,
T.
,
Katsuki
,
M.
,
Kishimoto
,
K.
, and
Morita
,
M.
,
2003
,
High Temperature Air Combustion: From Energy Conservation to Pollution Reduction
,
CRC Press
,
Boca Raton, FL
.
2.
Gupta
,
A. K.
,
Bolz
,
S.
, and
Hasegawa
,
T.
,
1999
, “
Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
209
217
.10.1115/1.2795984
3.
Jangsawang
,
W.
,
Klimanek
,
A.
, and
Gupta
,
A. K.
,
2006
, “
Enhanced Yield of Hydrogen From Wastes Using High Temperature Steam Gasification
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
179
185
.10.1115/1.2134733
4.
Gupta
,
A. K.
,
1996
, “
Thermal Destruction of Solid Wastes
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
187
192
.10.1115/1.2793861
5.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2010
, “
Effect of Flowfield for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion
,”
J. Appl. Energy
,
78
, pp.
1631
1640
.10.1016/j.apenergy.2009.09.032
6.
Arghode
,
V. K.
, and
Gupta
A. K.
,
2011
, “
Investigation of Forward Flow Distributed Combustion for Gas Turbine application
,”
J. Appl. Energy
,
88
, pp.
29
40
.10.1016/j.apenergy.2010.04.030
7.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2011
, “
Swirling Distributed Combustion for Clean Energy Conversion in Gas Turbine Applications
,”
J. Appl. Energy
,
88
, pp.
3685
3693
.10.1016/j.apenergy.2011.03.048
8.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2011
, “
Distributed Swirl Combustion for Gas Turbine Application
,”
J. Appl. Energy
,
88
, pp.
4898
4907
.10.1016/j.apenergy.2011.06.051
9.
Khalil
,
A.
,
Gupta
,
A. K.
,
Bryden
,
K. M.
, and
Lee
,
S. C.
,
2012
, “
Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032201
.10.1115/1.4006481
10.
Correa
,
S. M.
,
1992
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
, pp.
329
362
.10.1080/00102209208947221
11.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
12.
Archer
,
S.
, and
Gupta
,
A. K.
,
2004
, “
Effect of Swirl on Flow Dynamics in Unconfined and Confined Gaseous Fuel Flames
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, Jan. 5–8,
Reno, NV
, Paper No. AIAA-2004-0813.
13.
Leuckel
,
I. W.
, and
Fricker
,
N.
,
1976
, “
The Characteristics of Swirl-Stabilized Natural Gas Flames
,”
J. Inst. Fuel
,
49
, pp.
103
112
. Available at http://www.scopus.com/record/display.url?eid=2-s2.0-0016961931&origin=inward&txGid=4DAC89303550606EFE3D947D58AD3E6B.WeLimyRvBMk2ky9SFKc8Q%3a1
14.
Yetter
,
R. A.
,
Glassman
,
I.
, and
Gabler
,
H. C.
,
2000
, “
Asymmetric Whirl Combustion: A New Low NOx Approach
,”
Proc. Combust. Inst.
,
28
, pp.
1265
1272
.10.1016/S0082-0784(00)80339-2
15.
Khalil
,
A. E. E.
,
Arghode
,
V. K.
,
Gupta
,
A. K.
, and
Lee
,
S.C.
,
2012
, “
Low Calorific Value Fuelled Distributed Combustion With Swirl for Gas Turbine Applications
,”
J. Appl. Energy
,
98
, pp.
69
78
.10.1016/j.apenergy.2012.02.074
16.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2013
, “
Hydrogen Addition Effects on High Intensity Distributed Combustion
,”
J. Appl. Energy
,
104
, pp.
71
78
.10.1016/j.apenergy.2012.11.004
17.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2013
, “
Fuel Flexible Distributed Combustion for Gas Turbine Engines
,”
J. Appl. Energy
,
109
,
267
274
.10.1016/j.apenergy.2013.04.052
18.
Arghode
,
V. K.
,
2011
, “
Development of Colorless Distributed Combustion for Gas Turbine Application
,” Ph.D. Dissertation, University of Maryland, College Park, MD.
19.
Cole
,
J. A.
,
Parr
,
T. P.
,
Widmer
,
N. C.
,
Wilson
,
K. J.
,
Schadow
,
K. C.
, and
Seeker
,
W. R.
,
2000
, “
Scaling Criteria for the Development of an Acoustically Stabilized Dump Combustor
,”
Proc. Combust. Inst.
,
28
, pp.
1297
1304
.10.1016/S0082-0784(00)80343-4
20.
Kumar
,
S.
,
Paul
,
P. J.
, and
Mukunda
,
H. S.
,
2005
, “
Investigations of the Scaling Criteria for a Mild Combustion Burner
,”
Proc. Combust. Inst.
,
30
, pp.
2613
2621
.10.1016/j.proci.2004.07.045
21.
Bobba
,
M. K.
,
2007
, “
Flame Stabilization and Mixing Characteristics in a Stagnation Point reverse Flow Combustor
,” Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA.
22.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2013
, “
Flowfield Effects on Distributed Combustion for Clean Gas Turbines
,”
Proceedings of 51st Aerospace Sciences Meeting (ASM)
, Jan. 7–10,
Grapevine, TX
, Paper No. #AIAA-2013-0874.
You do not currently have access to this content.