Modern natural gas reservoir decline performance analysis has traditionally relied on the use of oil type curves along with the concepts of pseudopressure and pseudotime. Alternatively, it also employs empirical curve fitting of rate-time production data for reserve and future performance analysis. In this work we show that the use of a density approach leads to the formulation of a new-generation type curve applicable to the analysis of unsteady state of natural gas wells under boundary dominated flow (BDF). The resulting gas reservoir decline equation applies to any gas well producing at constant bottomhole pressure under BDF. On the basis of this decline model, a single-line, universal type curve is derived for any gas fluid and reservoir properties producing under a constant drawdown condition. New-generation analytical procedures for gas well performance analysis are presented, which does not necessitate the calculation of pseudopressure or pseudotime. Explicit OGIP predictions are thus enabled from the proposed universal type curve matching. The proposed single-line type curve is demonstrated to successfully match rate-time production BDF data and reliably estimate fluids in place for a number of numerical simulations and field cases. It is also demonstrated that the proposed formulation can be alternatively implemented in terms of straight-line analysis of 1/qgscb versus time data plots.

References

References
1.
Singh
,
K.
,
Holditch
,
S. A.
, and
Ayers
,
W.
,
2008
, “
Basin Analog Investigations Answer Characterization Challenges of Unconventional Gas Potential in Frontier Basins
,”
ASME J. Energy Resour. Technol.
,
130
, p.
043202
.10.1115/1.3000104
2.
Poston
,
S. W.
, and
Poe
,
B. D.
, Jr
.,
2008
, “
Analysis of Production Decline Curves
,”
Society of Petroleum Engineers
,
Richardson, TX
.
3.
Cheng
,
Y.
,
Lee
,
W. J.
, and
McVay
,
D. A.
,
2008
, “
Quantification of Uncertainty in Reserve Estimation From Decline Curve Analysis of Production Data for Unconventional Reservoirs
,”
ASME J. Energy Resour. Technol.
,
130
, p.
043201
.10.1115/1.3000096
4.
Al-Hussainy
,
R.
,
Ramey
,
H. J.
, and
Crawford
,
P. B.
,
1966
, “
The Flow of Real Gases Through Porous Media
,”
J. Pet. Technol.
,
18
(5), pp.
624
636
.10.2118/1243-A-PA
5.
Agarwal
,
R. G.
,
1979
, “
Real Gas Pseudo-Time—a New Function for Pressure Buildup Analysis of MHF Gas Wells
,”
SPE Paper 8279 Presented at the 54th SPE Annual Technical Conference and Exhibition
,
Las Vegas, Nevada
.
6.
Van Everdingen
,
A. F.
, and
Hurst
,
W.
,
1949
, “
The Application of the Laplace Transformation to Flow Problems in Reservoirs
,”
J. Pet. Technol.
,
1
(12), pp.
305
324
.10.2118/949305-G
7.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE J.
,
3
(3), pp.
245
255
.10.2118/426-PA
8.
Ramey
,
H. J.
, Jr
.,
1970
, “
Short-Time Well Test Data Interpretation in the Presence of Skin and Wellbore Storage
,”
J. Pet. Technol.
,
22
(1), pp.
97
104
.10.2118/2336-PA
9.
Gringarten
,
A. C.
,
Henry
,
J.
,
Ramey
,
J.
, and
Raghavan
,
R.
,
1974
, “
Unsteady-State Pressure Distributions Created by a Well With a Single Infinite-Conductivity Vertical Fracture
,”
SPE J.
,
14
(4), pp.
347
360
. 10.2118/4051-PA
10.
Cinco
,
H.
Samaniego
,
L. F.
, and
Dominguez
, V
. N.
,
1978
, “
Transient Pressure Behavior for a Well With a Finite-Conductivity Vertical Fracture
,”
SPE J.
,
18
(4), pp.
253
264
.10.2118/6014-PA
11.
Fetkovich
,
M. J.
,
1980
, “
Decline Curve Analysis Using Type Curves
,”
J. Pet. Technol.
,
32
(
6
), pp.
1065
1077
.10.2118/4629-PA
12.
Ehlig-Economides
,
C. A.
, and
Ramey
,
H. J.
, Jr
.,
1981
, “
Transient Rate Decline Analysis for Wells Produced at Constant Pressure
,”
SPE J.
,
21
(
1
), pp.
98
104
.10.2118/8387-PA
13.
Lu
,
J.
,
Tiab
,
D.
, and
Owayed
,
J. F.
,
2009
, “
Steady State Productivity for a Vertical Well in Anisotropic Sector Fault,” Channel, and Rectangular Reservoirs
,”
ASME J. Energy Resour. Technol.
131
, p.
013102
.10.1115/1.3066429
14.
Tiab
,
D.
,
Lu
,
J.
,
Nguyen
,
H.
, and
Owayed
,
J.
,
2010
, “
Evaluation of Fracture Asymmetry of Finite Conductivity Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
132
, p.
012901
.10.1115/1.4000700
15.
Lee
,
W. J.
, and
Holditch
,
S. A.
,
1982
, “
Application of Pseudotime to Buildup Test Analysis of Low-Permeability Gas Wells With Long-Duration Wellbore Storage Distortion
,”
J. Pet. Technol.
,
34
(12), pp.
2877
2887
.10.2118/9888-PA
16.
Carter
,
R. D.
,
1985
, “
Type Curves for Finite Radial and Linear Gas-Flow Systems: Constant-Terminal-Pressure Case
,”
SPE J.
,
25
(
5
), pp.
719
728
.10.2118/12917-PA
17.
Fraim
,
M. L.
, and
Wattenbarger.
R. A.
,
1987
, “
Gas Reservoir Decline-Curve Analysis Using Type Curves With Real Gas Pseudopressure and Normalized Time
,”
SPE Form. Eval. J.
,
2
(
4
), pp.
671
682
. 10.2118/14238-PA
18.
Meunier
,
D. F.
,
Kabir
,
C. S.
, and
Wittmann
,
M. J.
,
1987
, “
Gas Well Test Analysis: Use of Normalized Pseudovariables
,”
SPE Form. Eval. J.
,
2
(
4
), pp.
629
636
. 10.2118/13082-PA
19.
Blasingame
,
T. A.
, and
Lee
,
W. J.
,
1988
, “
The Variable-Rate Reservoir Limits Testing of Gas Wells
,”
SPE Paper 17708 Presented at the SPE Gas Technology Symposium
,
Dallas, TX
.
20.
Palacio
,
J. C.
, and
Blasingame
,
T. A.
,
1993
, “
Decline Curve Analysis Using Type Curves—Analysis of Gas Well Production Data
,”
SPE 25909 Presented at the 1993 SPE Rocky Mountain Regional/Low Permeability Reservoirs Symposium
,
Denver, CO
, Apr. 12–14.
21.
Kamal
,
M. M.
,
2009
, “
Transient Well Testing
,”
SPE Monogr., 23, Henry L. Doherty Series
,
Society of Petroleum Engineers
,
Richardson, TX
.
22.
Lei
,
W.
,
Xiao-D.
,
W.
,
Xi-M
,
D.
, and
Li
,
Z.
,
2012
, “
Rate Decline Curves Analysis of a Vertical Fractured Well With Fracture Face Damage
,”
ASME J. Energy Resour. Technol.
,
134
, p.
032803
.10.1115/1.4006865
23.
Ye
,
P.
, and
Ayala
H., Luis F.
,
2012
, “
A Density Diffusivity Approach for the Unsteady State Analysis of Natural Gas Reservoirs
,”
J. Natural Gas Sci. Eng.
,
7
, pp.
22
34
.10.1016/j.jngse.2012.03.004
24.
Golan
,
M.
, and
Whitson
,
C. H.
,
1991
,
Well Performance
,
Prentice Hall
,
Englewood Cliffs, NJ
.
25.
Raghavan
,
R.
,
1993
,
Well Test Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
26.
Horne
,
R. N.
,
1995
, “
Modern Well Test Analysis: A Computer-Aided Approach
,”
Petroway
,
Palo Alto, CA
.
27.
Arps
,
J. J.
,
1945
, “
Analysis of Decline Curves
,”
Trans. AIME
,
160
(1), pp.
228
247
.10.2118/945228-G
28.
Ayala H.
,
Luis F.
, and
Ye
,
P.
,
2013
, “
A Unified Type-Curve for Decline Curve Analysis of Natural Gas Reservoirs in Boundary Dominated Flow
,”
SPE J.
,
18
(
1
), pp.
97
113
. 10.2118/161095-PA
29.
Voelker
,
J.
,
2004
, “
Determination of Arps' Decline Exponent From Gas Reservoir Properties and the Efficacy of Arps' Equation in Forecasting Single-Layer, Single-Phase Gas Well Decline
,”
SPE Paper 90649 Presented at the 2004 SPE Annual Technical Conference and Exhibition
,
Houston, TX
, Sept. 26–29.
30.
Ahmed
,
T.
,
2006
,
Reservoir Engineering Handbook
,
3rd ed.
,
Gulf Professional Publishing, Elsevier, Burlington, MA
.
31.
Computer Modeling Group Ltd (CMG)
,
2012
,
CMG IMEX User's Manual
,
CMG
,
Calgary, Canada
.
32.
Fetkovich
,
M. J.
,
Vienot
,
M. E.
,
Bradley
,
M. D.
, and
Kiesov
,
U. G.
,
1987
, “
Decline Curve Analysis Using Type Curves: Case Histories
,”
SPE Form. Eval. J.
,
2
(
4
), pp.
637
656
.10.2118/13169-PA
33.
Ilk
,
D. J.
,
Rushing
,
A.
, and
Blasingame
,
T. A.
,
2009
, “
Decline-Curve Analysis for HP/HT Gas Wells: Theory and Applications
,”
SPE Paper 125031 Presented at the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
.
You do not currently have access to this content.