This paper presents the effect of swirl number on combustion characteristics such as temperature, velocity, gas concentrations in a natural gas diffusion flame. Numerial simulations carried out using the commercial computational fluid dynamics (CFD) code, Fluent by choosing appropriate model parameters. The combustion reaction scheme in the flame region was modeled using eddy dissipation model with one step global reaction scheme. A standard k-ε turbulence model for turbulent closure and P-I radiation model for flame radiation inside the combustor is used in the numerical simulations. In order to investigate the swirling effect on the combustion characteristics, seven different swirl numbers including 0; 0.1; 0.2; 0.3; 0.4; 0.5; and 0.6 are used in the study. Numerical results are validated and compared with the published experimental and simulation results. A good consistency is found between the present results and those published measurement and simulation results in the available literature. The results shown that the combustion characteristics such as the flame temperature, the gas concentrations including CO2, H2O, O2, and CH4 are strongly affected by the swirl number. Depending on the degree of swirl, the fluid dynamics behavior of natural gas diffusion flame including axial velocity distribution, central recirculation zone (CTRZ) and external recirculation zone (ETRZ) were also strongly affected.

References

References
1.
Khelil
,
A.
,
Naji
,
H.
,
Loukarfi
,
L.
, and
Mompean
,
G.
,
2009
, “
Prediction of a High Swirled Natural Gas Diffusion Flame Using a PDF Model
,”
Fuel
,
88
, pp.
374
381
.10.1016/j.fuel.2008.09.008
2.
Keramida
,
E.
,
Liakos
,
H. H.
,
Founti
,
M. A.
,
Boudouvis
,
A. G.
, and
Markatos
,
N. C.
,
2000
, “
Radiative Heat Transfer in Natural Gas-Fired Furnaces
,”
Int. J. Heat Mass Trans.
,
43
, pp.
1801
1809
.10.1016/S0017-9310(99)00244-6
3.
Wilkes
,
N. S.
,
Guilbert
,
P. W.
,
Shepherd
,
C. M.
, and
Simcox
,
S.
,
1989
, “
The Application of Harwell-Flow 3D to Combustion Models
,”
Atomic Energy Authority Report
,
Harwell, UK
, Paper No. AERE-R13508.
4.
Khanafer
,
K.
, and
Aithal
,
S. M.
,
2011
, “
Fluid-Dynamic and NOx Computation in Swirl Burners
,”
Int. J. Heat Mass Transfer
,
54
, pp.
5030
5038
.10.1016/j.ijheatmasstransfer.2011.07.017
5.
Jiang
,
B.
,
Liang
,
H.
,
Huang
,
G.
, and
Li
,
X.
,
2006
, “
Study on NOx Formation in CH4/Air Jet Combustion
,”
Chin. J. Chem. Eng.
,
14
, pp.
723
728
.10.1016/S1004-9541(07)60002-0
6.
Chuang
,
S. H.
,
Yang
,
C. S.
, and
Wu
,
N. J.
,
1999
, “
Predictions of Swirling Flow in Sudden-Expansion Dump Combustor With Flameholder Side-Inlet Using Two-Step Combustion Model
,”
Int. J. Numer. Methods Heat Fluid Flow
,
9
, pp.
764
787
.10.1108/09615539910291154
7.
Saqr
,
K. M.
,
Aly
,
H. S.
,
Sies
,
M. M.
, and
Wahid
,
M. A.
,
2010
, “
Effect of Free Stream Turbulence on NOx and Soot Formation in Turbulent Ddiffusion CH4-Air Flames
,”
Int. Commun. Heat Mass.
,
37
, pp.
611
617
.10.1016/j.icheatmasstransfer.2010.02.008
8.
Al-Omari
,
S. A. B.
,
Kawajiri
,
K.
, and
Yonesawa
,
T.
,
2001
, “
Soot Processes in a Methane-Fueled Furnace and Their Impact on Radiation Heat Transfer to Furnace Walls
,”
Int. J. Heat Mass Transfer
,
44
, pp.
2567
2581
.10.1016/S0017-9310(00)00288-X
9.
İlbas
,
M.
,
Yılmaz
,
İ.
, and
Kaplan
,
Y.
,
2005
, “
Investigations of Hydrogen and Hydrogen-Hydrocarbon Composite Fuel Combustion and NOx Emission Characteristics in a Model Combustor
,”
Int. J. Hydrogen Energy
,
30
, pp.
1139
1147
.10.1016/j.ijhydene.2004.10.016
10.
Ilbas
,
M.
,
Yılmaz
,
İ.
,
Veziroglu
,
T. N.
, and
Kaplan
,
Y.
,
2005
, “
Hydrogen as Burner Fuel: Modelling of Hydrogen-Hydrocarbon Composite Fuel Combustion and NOx Formation in a Small Burner
,”
Int. J. Energy Res.
,
29
, pp.
973
990
.10.1002/er.1104
11.
İlbaş
,
M.
, and
Yılmaz
,
İ.
,
2012
, “
Experimental Analysis of the Effects of Hydrogen Addition on Methane Combustion
,”
Int. J. Energy Res.
,
36
, pp.
643
647
.10.1002/er.1822
12.
Yılmaz
,
İ.
, and
İlbas
,
M.
,
2008
, “
An Experimental Study on Hydrogen-Methane Mixtured Fuels
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
178
187
.10.1016/j.icheatmasstransfer.2007.06.004
13.
Khalil
,
A. E. E.
,
Gupta
,
A. K.
,
Bryden
,
K. M.
, and
Lee
,
S. C.
,
2012
, “
Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
0322011
.10.1115/1.4006481
14.
Yılmaz
,
İ.
,
Ratner
,
A.
,
İlbas
,
M.
, and
Huang
,
Y.
,
2010
, “
Experimental Investigation of Thermoacoustic Coupling Using Blended Hydrogen–Methane Fuels in a Low Swirl Burner
,”
Int. J. Hydrogen Energy
,
35
, pp.
329
336
.10.1016/j.ijhydene.2009.10.018
15.
Jizhou
,
W.
,
Yanping
,
Z.
, and
Shuhong
,
H.
,
2012
, “
A Multizone Model of an Economizer in a 600 MW Boiler Unit
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
0416011
.10.1115/1.4007253
16.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
0322041
.10.1115/1.4007216
17.
Moore
,
N. J.
,
Terry
,
S. D.
,
Lyons
,
K. M.
,
2011
, “
Flame Hysteresis Effects in Methane Jet Flames in Air-Coflow
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
0222021
.10.1115/1.4003806
18.
Zhao
,
K.
,
Cui
,
D.
,
Xu
,
T.
,
Zhou
,
Q.
,
Hui
,
S.
,
Hu
,
H.
,
2008
, “
Effects of Hydrogen Addition on Methane Combustion
,”
Fuel Process. Technol.
,
89
, pp.
1142
1147
.10.1016/j.fuproc.2008.05.005
19.
Barajas
,
P. E.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2012
, “
Combustion Characteristics of Biofuels in Porous-Media Burners at an Equivalence Ratio of 0.8
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
0210041
.10.1115/1.4006046
20.
Lundmark
,
D.
,
Mueller
,
C.
,
Backman
,
R.
,
Zevenhoven
,
M.
,
Skrifvars
,
B. J.
, and
Hupa
,
M.
,
2010
, “
CFD Based Ash Deposition Prediction in a BFBC Firing Mixtures of Peat and Forest Residue
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
0310031
.10.1115/1.4001798
21.
Lopes
,
J.
,
Semiao
,
V.
,
Carvalho
,
M. G.
,
2002
, “
On the Effect of the Local Turbulence Scales on the Mixing Rate of Diffusion Flames: Assessment of Two Different Combustion Models
,”
Int. J. Energy Res.
,
26
, pp.
893
920
.10.1002/er.827
22.
Liakos
,
H. H.
,
Founti
,
M. A.
, and
Markatos
,
N. C.
,
2001
, “
The Effect of Pressure in Industrial Propane-Oxygen Mixture
,”
Int. J. Energy Res.
,
25
, pp.
17
28
.10.1002/1099-114X(200101)25:1<17::AID-ER663>3.0.CO;2-N
23.
Ma
,
C. Y.
,
Mahmud
,
T.
,
Gaskell
,
P. H.
, and
Hampartsoumian
,
E.
,
1999
, “
Numerical Predictions of a Turbulent Diffusion Flame in a Cylindirical Combustor Using Eddy Dissipation and Flamelet Combustion Models
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
, pp.
697
705
.10.1177/095440629921300705
24.
Song
,
G.
,
Bjorge
,
T.
,
Holen
,
F.
, and
Magnussen
,
B. F.
,
1997
, “
Simulation of Fluid Flow and Gaseous Radiation Heat Transfer in a Natural Gas-Fired Furnace
,”
Int. J. Numer. Methods Heat Fluid Flow
,
7
, pp.
169
180
.10.1108/09615539710163248
25.
Orsino
,
S.
,
Weber
,
R.
,
Bollettini
,
U.
,
2001
, “
Numerical Simulation of Combustion of Natural Gas With High Temperature Air
,”
Combust. Sci. Technol.
,
170
, pp.
1
34
.10.1080/00102200108907848
26.
Morvan
,
D.
,
Porterie
,
B.
,
Loraud
,
J. C.
,
Larini
,
M.
,
2000
, “
Numerical Simulation of a Methane/Air Radiating Turbulent Diffusion Flame
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
, pp.
196
227
.10.1108/09615530010312347
27.
Chen
,
R. H.
,
1998
, “
A Parametric Study of NO2 Emission From Turbulent H2 and CH4 Jet Diffusion Flames
,”
Combust. Flame
,
112
, pp.
188
198
.10.1016/S0010-2180(97)81767-1
28.
Gambit,
2003
, Gambit Manual, Fluent, Inc.
29.
Fluent Incorporated
,
2001
, FLUENT 6.1.22 User Guide,
Fluent Incorporated
,
Lebanon, NH
.
30.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, Kent, England
.
31.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1976
, “
On Mathematical Modelling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
16th Symposium (International) on combustion
,
The Combustion Institute Pittsburgh, PA
, p.
719
.
32.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London
.
33.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
34.
Siegel
,
R.
, and
Howell
,
J. R.
,
1992
,
Thermal Radiation Heat Transfer
,
Hemisphere Publishing Corporation
,
Washington, DC
.
You do not currently have access to this content.