Steam-flow-excited vibration is one of the main faults of large steam turbines. The catastrophe caused by steam-flow-excited vibration brings danger to the operation of units. Therefore, it is significant to identify the impact factors of catastrophe, and master the rules of catastrophe. In this paper, the quantitative analysis of catastrophe performance induced by steam exciting force in the steam turbine governing stage is conducted based on the catastrophe theory, nonlinear vibration theory, and fluid dynamics. The model of steam exciting force in the condition of partial admission in the governing stage is derived. The nonlinear kinetic model of the governing stage with steam exciting force is proposed as well. The cusp catastrophe and bifurcation set of steam-flow-excited vibration are deduced. The rotational angular frequency, the eccentric distance and the opening degrees of the governing valves are identified as the main impact factors to induce catastrophe. Then, the catastrophe performance analysis is conducted for a 300 MW subcritical steam turbine. The rules of catastrophe are discussed, and the system's catastrophe areas are divided. It is discovered that the system catastrophe will not occur until the impact factors satisfy given conditions. Finally, the numerical calculation method is employed to analyze the amplitude response of steam-flow-excited vibration. The results verify the correctness of the proposed analysis method based on the catastrophe theory. This study provides a new way for the catastrophe performance research of steam-flow-excited vibration in large steam turbines.

References

References
1.
Samuel
,
R.
,
2013
, “
Modeling and Analysis of Drillstring Vibration in Riserless Environment
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013101
.10.1115/1.4007691
2.
Tikhonov
,
V. S.
, and
Safronov
,
A. I.
,
2011
, “
Analysis of Postbuckling Drillstring Vibrations in Rotary Drilling of Extended-Reach Wells
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), p.
043102
.10.1115/1.4005241
3.
Cui
,
Y. H.
,
Zhang
,
J. J.
, and
Xu
,
F. H.
,
2012
, “
Analysis and Management of Steam-Excited Vibration Fault of a Certain 300MW Steam Turbine
,”
Turbine Technol.
,
54
(
2
), pp.
158
160
.10.3969/j.issn.1001-5884.2012.02.024
4.
Shi
,
J. Y.
,
Zhang
,
H. Y.
, and
Xu
,
C. Z.
,
1991
, “
Summary of Major Incidents of Large Rotor System
,”
Supercritical Technology Information Tracking
,
6
, pp.
1
12
.
5.
Thomas
,
H. J.
,
1958
, “
Unstable Oscillations of Turbine Rotors due to Steam Leakage in the Sealing Glands and the Buckets
,”
Bulletin Scientifique A.J.M
,
71
, pp.
223
236
.
6.
Alford
,
J. S.
,
1965
, “
Protecting Turbomachinery From Self-Excited Whirl
,”
ASME J. Eng. Power
,
5
, pp.
333
344
.10.1115/1.3678270
7.
Wyssmann
,
H. R.
,
Pham
,
T. C.
, and
Jenny
,
R. J.
,
1984
, “
Prediction of Stiffness and Damping Coefficients for Centrifugal Compress or Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
920
926
.10.1115/1.3239659
8.
Komeokaa
,
T.
,
1984
, “
Theoretical Approach for Labyrinth Seal Forces–Cross Coupled Stiffness of a Straight Through Labyrinth Seal
,”
Paper No. NASA CP 2338
.
9.
Chai
,
S.
,
Zhang
,
Y. M.
, and
Qu
,
Q. W.
,
2001
, “
The Analysis on the Air-Exciting-Vibration Force of Steam Turbine
,”
Eng. Sci.
,
3
(
4
), pp.
68
72
.10.3969/j.issn.1009-1742.2001.04.012
10.
Yang
,
J. G.
,
Zhu
,
T. Y.
, and
Gao
,
W.
,
1998
, “
Influence of Steam Induced Vibration on the Stability of Rotor Bearing System
,”
Proc. CSEE
,
18
(
1
), pp.
35
42
.10.3321/j.issn:0258-8013.1998.01.003
11.
Ding
,
X. J.
,
Wang
,
G.
, and
Huang
,
S. H.
,
2003
, “
Calculation of Efficiency Factor in Alford's Force
,”
J. Huazhong Univ. Sci. Technol.
,
31
(
4
), pp.
66
68
.10.3321/j.issn:1671-4512.2003.04.023
12.
Li
,
Z. G.
, and
Chen
,
Y. S.
,
2012
, “
Research on 1:2 Subharmonic Resonance and bBifurcation of Nonlinear Rotor-Seal System
,”
Appl. Math. Mech.
,
33
(
4
), pp.
499
510
.10.1007/s10483-012-1566-7
13.
Heinz
,
C.
,
Schatz
,
M.
, and
Casey
,
M. V.
,
2010
, “
Experimental and Analytical Investigations of a Low Pressure Model Turbine During Forced Response Excitation
,”
Proc. ASME Turbo Expo, Parts A and B
,
6
, pp.
767
777
10.1115/GT2010-22146.
14.
Yokono
,
Y.
, and
Biswas
,
D.
,
2007
, “
Numerical Analyses of Flow-Induced Vibration for Turbine Blades
,”
9th International Symposium on Fluid Control Measurement and Visualization 2007
, pp.
850
860
.
15.
Yoojun
,
H.
, and
HinHyoung
,
K.
,
2012
, “
Numerical Study on Unsteadiness of Tip Clearance Flow and Performance Prediction of Axial Compressor
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
379
1389
.10.1007/s12206-011-1024-5
16.
Bohn
,
D. E.
, and
Funke
,
H. W.
,
2003
, “
Experimental Investigations into the Nonuniform Flow in a 4-Stage Turbine With Special Focus on the Flow Equalization in the First Turbine Stage
,”
Proc. ASME Turbo Expo
,
6
, pp.
281
289
.10.1115/GT2003-38547
17.
Mahkamov
,
K.
,
2006
, “
Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modelling
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
203
214
.10.1115/1.2213273
18.
Lundmark
,
D.
,
Mueller
,
C.
,
Backman
,
R.
,
Zevenhoven
,
M.
,
Skrifvars
,
B. J.
, and
Hupa
,
M.
,
2010
, “
CFD Based Ash Deposition Prediction in a BFBC Firing Mixtures of Peat and Forest Residue
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
031003
.10.1115/1.4001798
19.
Sorgun
,
M.
,
Ozbayoglu
,
M. E.
, and
Aydin
,
I.
,
2010
, “
Modeling and Experimental Study of Newtonian Fluid Flow in Annulus
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
033102
.10.1115/1.4002243
20.
Sakai
,
N.
,
Harada
,
T.
, and
Imai
,
Y.
,
2006
, “
Numerical Study of Partial Admission Stages in Steam Turbine: Efficiency Improvement by Optimizing Admission Arc Position
,”
JSME Int. J., Ser. B
,
49
(
2
), pp.
212
217
.10.1299/jsmeb.49.212
21.
Hushmandi
,
N. B.
,
Jiasen
,
H.
, and
Jens
,
F.
,
2008
, “
Numerical Study of Unsteady Flow Phenomena in a Partial Admission Axial Steam Turbine
,”
Proc. ASME Turbo Expo, Part B
,
5
, pp.
713
722
.10.1115/GT2008-50538
22.
Jeffrey
,
M. J.
,
2003
, “
Three-Dimensional CFD Rotor Dynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vibr. Acoust
,
125
, pp.
427
433
.10.1115/1.1615248
23.
Toshio
,
H.
,
Zeng
,
L. G.
, and
Gordon
,
K. R.
,
2005
, “
Application of Computational Fluid Dynamics Analysis for Rotating Machinery
,”
ASME J. Eng. Gas. Turbines Power
,
127
, pp.
820
826
.10.1115/1.1808426
24.
Ren
,
T.
,
1989
,
Mathematical Models of Morphogenesis
,
Shanghai Translation Publishing House
,
Shanghai
.
25.
Marco
,
C.
,
Duffy
,
J.
, and
Castelli
,
V. P.
,
2002
, “
Catastrophe Analysis of a Planar System With Flexural Pivots
,”
Mech. Mach. Theory
,
37
, pp.
693
716
.10.1016/S0094-114X(02)00012-5
26.
Liu
,
S. Y.
,
Song
,
X. P.
, and
Wen
,
B. C.
,
2005
, “
Catastrophe in Fault Developing Process of Rotor System
,”
J. Northeast. Uni. (Nat. Sci.)
,
26
(
3
), pp.
285
288
.10.3321/j.issn:1005-3026.2005.03.022
27.
Zhang
,
X. Y.
,
2004
, “
The Analysis and Control of Steam Excitation Vibration in Large Steam Turbine
,”
Thermal Power Generation
,
2
, pp.
47
56
.10.3969/j.issn.1002-3364.2004.02.015
28.
Wu
,
J. D.
,
Hou
,
X. L.
, and
Liu
,
C. C.
,
2006
, “
Theoretical Analysis of Characteristics on Main Resonance of a Rotating System With Nonlinear Stiffness
,”
China Mech. Eng.
,
17
(
5
), pp.
539
541
.10.3321/j.issn:1004-132X.2006.05.026
You do not currently have access to this content.