In situ monitoring of chemical species from the combustion pulverized coal in high-temperature air is examined using several different spectroscopic diagnostic at different equivalence ratios. Two-dimensional (2D) distributions of flame temperature were obtained using a thermal video camera. The experimental results showed the temperatures to range from low to 1400 °C under various conditions of fuel-lean, stoichiometric, and fuel-rich. The highest temperature and flame stability were obtained under fuel-lean combustion condition. The chemical species generated from within the combustion zone were analyzed from the spontaneous emission spectra of the flame in the Ultraviolet–visible (UV-Vis) range. The spatial distribution of NO, OH, and CN were identified from the spectra. The 2D distribution of emission intensity visualized and recorded for NO, OH, and CN revealed high-temperatures close to the root of the flame that rapidly dispersed radially outward to provide very high temperatures over a much larger volume at further downstream locations of the flame.

References

References
1.
Ministry of Economic, Trade and Industry, Government of Japan
, “
2010 Annual Report on Energy
” (Japan's Energy White Paper 2010), June 2010, http://www.meti.go.jp/english/press/data/pdf/20100615_04a.pdf,
February15, 2011
.
2.
Tsuji
,
H.
,
Gupta
,
A. K.
,
Hasegawa
,
T.
,
Katsuki
K.
,
Kishimoto
,
K.
, and
Morita
,
M.
,
2003
,
High Temperature Air Combustion: From Energy Conservation to Pollution Reduction
,
CRC Press
,
Boca Raton
.
3.
Gupta
,
A. K.
,
Bolz
,
S.
, and
Hasegawa
,
T.
,
1999
, “
Effect of Air Preheat and Oxygen Concentration on Flame Structure and Emission
,”
Proc. ASME J. Energy Resour. Technol.
,
121
, pp.
209
216
.10.1115/1.2795984
4.
Hasegawa
,
T.
,
Mochida
,
S.
, and
Gupta
,
A. K.
,
2002
, “
Development of Advanced Industrial Furnace Using Highly Preheated Combustion Air
,”
J. Propul. Power
,
18
(
2
), pp.
233
239
.10.2514/2.5943
5.
Kitagawa
,
K.
,
Konishi
,
N.
,
Arai
,
N.
, and
Gupta
,
A. K.
,
2003
, “
Temporally Resolved 2-D Spectroscopic Study on the Effect of Highly Preheated and Low Oxygen Concentration Air on Combustion
,”
ASME J. Eng. Gas Turbine Power
,
125
, pp.
326
331
.10.1115/1.1520155
6.
Khalil
,
A.
,
Gupta
,
A. K.
, and
Lee
,
S. C.
,
2012
, “
Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications
,”
ASME J. Energy Resour. Technol.
,
134
, p.
032201
.10.1115/1.4006481
7.
Gupta
,
A. K.
,
2000
, “
Flame Characteristics With High Temperature Air Combustion
,”
38th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, Paper No. 2000-0593.
8.
Gupta
,
A. K.
, and
Hasegawa
,
T.
,
1999
, “
The Effect of Air Preheat Temperature Air and Oxygen Concentration in Air on the Structure of Propane Air Diffusion Flames
,”
37th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics
,
Reno, NV
,
Jan. 11–14
, Paper No. 99-0725.
9.
Yang
,
W. H.
, and
Blasiak
,
W.
,
2005
, “
Numerical Study of Fuel Temperature Influence on Single Gas Combustion in Highly Preheated and Oxygen Deficient Air
,”
Energy
,
30
, pp.
385
398
.10.1016/j.energy.2004.05.011
10.
Choi
,
G. M.
, and
Kutsuki
,
M.
,
2001
, “
Advanced Low NOx Combustion Using Highly Preheated Air
,”
Energy Convers. Manage.
,
42
, pp.
639
652
.10.1016/S0196-8904(00)00074-1
11.
Lille
,
S.
,
Blasiak
,
W.
, and
Jewartowski
,
M.
,
2005
, “
Experimental Study of the Fuel Jet Combustion in High-Temperature and Low Oxygen Content Exhaust Gases
,”
Energy
,
30
, pp.
373
384
.10.1016/j.energy.2004.05.008
12.
Zhu
,
J.
,
Lu
,
Q.
,
Niu
,
T.
,
Song
,
G.
, and
Na
,
Y.
,
2009
, “
NO Emission on Pulverized Coal Combustion in High-Temperature Air From Circulating Fluidized Bed—A Experimental Study
,”
Fuel Process. Technol.
,
90
, pp.
664
670
.10.1016/j.fuproc.2008.12.001
13.
Lu
,
Q.
,
Zhu
,
J.
,
Niu
,
T.
,
Song
,
G.
, and
Na
,
Y.
,
2008
, “
Pulverized Coal Combustion and NOx Emissions in High-Temperature Air From Circulating Fluidized Bed
,”
Fuel Process. Technol.
,
89
, pp.
1186
1192
.10.1016/j.fuproc.2008.05.008
14.
Suda
,
T.
,
Takafuji
,
M.
,
Riechelmann
,
D.
,
Hirata
,
T.
, and
Sato
,
J.
,
2004
, “
Development of High-Temperature Air Combustion Technology (HiCOT) for Pulverized Coal Combustion
,”
Ishikawajima-Harima Eng. Rev.
,
44
(
3
), pp.
199
208
.
15.
Kopparthi
,
V.
, and
Gollahalli
,
S. R.
,
1995
, “
Nitric Oxide Emission From Pulverized Coal Blend Flames
,”
ASME J. Energy Resour. Technol.
,
117
(
3
), pp.
228
233
.10.1115/1.2835345
16.
Jang
,
D. S.
, and
Acharya
,
S.
,
2009
, “
Moment Closure Model for Nitrogen Oxide Formation in Pulverized Coal Combustion Furnaces
,”
ASME J. Energy Resour. Technol.
,
113
(
2
), pp.
117
121
.10.1115/1.2905784
17.
Jang
,
D. S.
, and
Acharya
,
S.
,
1988
, “
Improved Modelling of Pulverized Coal Combustion in a Furnace
,”
ASME J. Energy Resour. Technol.
,
110
(
2
), pp.
124
132
.10.1115/1.3231366
18.
Ito
,
S.
,
1998
, “
Spectroscopic Visualization of NO Radical During Combustion Flame With High Temperature Air
,” Master's thesis,
Applied Chemical Department, Nagoya University
,
Japan
.
19.
Gupta
,
A. K.
,
1996
, “
Thermal Destruction of Solid Wastes
,”
ASME J. Energy Resour. Technol.
,
118
, pp.
187
192
.10.1115/1.2793861
You do not currently have access to this content.