An approach to model coal combustion process to predict and minimize unburned carbon in bottom ash of a large-capacity pulverized coal-fired boiler used in thermal power plant is proposed. The unburned carbon characteristic is investigated by parametric field experiments. The effects of excess air, coal properties, boiler load, air distribution scheme, and nozzle tilt are studied. An artificial neural network (ANN) is used to model the unburned carbon in bottom ash. A genetic algorithm (GA) is employed to perform a search to determine the optimum level process parameters in ANN model which decreases the unburned carbon in bottom ash.

References

References
1.
Sathyanathan
,
V. T.
, and
Mohammed
,
K. P.
,
2004
, “
Prediction of Unburned Carbon in Tangentially Fired Boiler Using Indian Coal
,”
Fuel
,
83
, pp.
2217
2227
.10.1016/j.fuel.2004.05.004
2.
Si
,
F.
,
Romero
,
C. E.
,
Yao
,
Z.
,
Xu
,
Z.
,
Morey
,
R. L.
, and
Liebowitz
,
B. N.
,
2009
, “
A New Approach for Function Approximation in Boiler Combustion Optimization Based on Modified Structural AOSVR
,”
Expert Syst. Appl.
,
36
, pp.
8691
8704
.10.1016/j.eswa.2008.12.008
3.
Ma
,
J.
, and
Hemmers
,
O.
,
2011
, “
Technoeconomic Analysis of Microalgae Cofiring Process for Fossil Fuel-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
133
, p.
011801
.10.1115/1.4003729
4.
Backreedy
,
R. I.
,
2005
, “
Prediction of Unburned Carbon and NOx in a Tangentially Fired Power Station Using Single Coal Blends
,”
Fuel
,
84
, pp.
2196
2203
.10.1016/j.fuel.2005.05.022
5.
Gowreesh
,
S.
,
2011
, “
Experimental Investigation of Boiler Pressure Behavior in Closed-Open-Closed System
,”
ASME J. Energy Resour. Technol.
,
133
, p.
024501
.10.1115/1.4003882
6.
Thompson
,
S.
, and
Li
,
K.
,
2003
,
Thermal Power Plant Simulation and Control
,
D.
Flynn
, ed.,
The Institution of Electrical Engineers
,
UK
, pp.
244
268
.
7.
Lundmark
,
D.
,
Mueller
,
C.
,
Backman
,
R.
,
Zevenhoven
,
M.
,
Skrifvars
,
B.-J.
, and
Hupa
,
M.
,
2010
, “
CFD Based Ash Deposition Prediction in a BFBC Firing Mixtures of Peat and Forest Residue
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
031003
.10.1115/1.4001798
8.
Jizhou
,
W.
,
Yanping
,
Z.
,
Yu
,
L.
, and
Shuhong
,
H.
,
2012
, “
A Multizone Model of an Economizer in a 600 MW Boiler Unit
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041601
.10.1115/1.4007253
9.
Kalogirou
,
S. A.
,
1999
, “
Applications of Artificial Neural Networks in Energy Systems—A Review
,”
Energy Convers. Manage.
,
40
, pp.
1073
1087
.10.1016/S0196-8904(99)00012-6
10.
Chu
,
J.-Z.
,
Shieh
,
S.-S.
,
Jang
,
S.-S.
,
Chien
,
C.-I.
,
Wan
,
H.-P.
, and
Ko
,
H.-H.
,
2003
, “
Constrained Optimization of Combustion in a Stimulated Coal-Fired Boiler Using Artificial Neural Network Model and Information Analysis
,”
Fuel
,
82
, pp.
693
703
.10.1016/S0016-2361(02)00338-1
11.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.10.1115/1.4005922
12.
Zheng
,
L.-G.
,
Zhou
,
H.
,
Cen
,
K.-F.
, and
Wang
,
C.-L.
,
2009
, “
A Comparative Study of Optimization Algorithms for Low NOx Combustion Modification at a Coal-Fired Utility Boiler
,”
Expert Syst. Appl.
,
36
, pp.
2780
2793
.10.1016/j.eswa.2008.01.088
You do not currently have access to this content.