In this study, swing rates of drum boilers are investigated in regard to maintaining proper drum level limits. The nonlinear boiler model employed in study investigations was validated by comparing simulated results against literature data. Experimental field data was recorded for variations in firing, steam, and feedwater flow rates in addition to drum pressure and water level were obtained from a Saudi Aramco power plant. The experimental results were used also for tuning the water level control loop and finding the proportional and integral gains of the boiler model that was simulated using matlab. Influence of steam demand perturbations on water drum levels was tested using four different perturbation schemes and in all cases the levels were found to be within the allowable limits. The time variation of drum water level in response to 40% ramp increase in steam demand occurring at the four different input perturbations was obtained. The considered values of swing rates of steam flow were eight steps of 5% per minute, four steps of 10% per minute, two steps of 20% per minute, or one step of 40% per minute. Although the maximum transient water level overshoot is attained due to the one step of 40% per minute perturbation, still remains within the allowable limits of either the low or high levels according to the boiler manufacturer specifications. The present results indicate that the allowable swing rates are much lower in the case of drop in steam demand in comparison to the case of rise in steam demand.

References

References
1.
Inoue
,
T.
,
Taniguchi
,
H.
, and
Ikeguchi
,
Y.
,
2000
, “
A Model of Fossil Fueled Plant With Once-Through Boiler for Power System Frequency Simulation Studies
,”
IEEE Trans. Power Syst.
,
15
(
4
), pp.
1322
1328
.10.1109/59.898108
2.
Garduno-Ramirez
,
R.
, and
Lee
,
K. Y.
,
2001
, “
Multiobjective Optimal Power Plant Operation Through Coordinate Control With Pressure Set Point Scheduling
,”
IEEE Trans. Energy Convers.
,
16
(
2
), pp.
115
122
.10.1109/60.921461
3.
Peng
,
H.
,
Ozaki
,
T.
,
Haggan-Ozaki
,
V.
, and
Toyoda
,
Y.
,
2002
, “
A Nonlinear Exponential ARX Model-Based Multivariable Generalized Predictive Control Strategy for Thermal Power Plants
,”
IEEE Trans. Control Syst. Technol.
,
10
(
2
), pp.
256
262
.10.1109/87.987071
4.
Habbi
,
H.
,
Zelmat
,
M.
, and
Bouamama
,
B.
,
2003
, “
A Dynamic Fuzzy Model for a Drum-Boiler-Turbine System
,”
Automatica
,
39
, pp.
1213
1219
.10.1016/S0005-1098(03)00075-X
5.
Chen
,
P.
, and
Shamma
,
J. S.
,
2004
, “
Gain-Scheduled L–Optimal Control for Boiler-Trubine Dynamics With Actuator Saturation
,”
J. Process Control
,
14
, pp.
263
277
.10.1016/S0959-1524(03)00040-4
6.
Kim
,
H.
, and
Choi
,
S.
,
2005
, “
A Model on Water Level Dynamics in Natural Circulation Drum-Type Boilers
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
786
796
.10.1016/j.icheatmasstransfer.2004.10.010
7.
Bhambare
,
K. S.
,
Mitra
,
S. K.
, and
Gaitondes
,
U. N.
,
2007
, “
Modeling of a Coal-Fired Natural Circulation Boiler
,”
ASME J. Energy Resour. Technol
,
129
(
2
), pp.
159
168
.10.1115/1.2719209
8.
Kaya
,
D.
, and
Eyidogan
,
M.
,
2009
, “
Energy Conservation Opportunity in Boiler Systems
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032401
.10.1115/1.3185440
9.
Gowreech
,
S.
,
Estrada
,
J.
,
Ong
,
C. K.
, and
Xiao
,
T. K.
,
2011
, “
Experimental Investigation of Boiler Pressure Behavior in Closed-Open-Closed System
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
024501
.10.1115/1.4003882
10.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
, and
Reddy
,
B. V.
,
2007
, “
Generalized Thermodynamic Analysis of Steam Power Cycles With ‘n’ Number of Feedwater Heaters
,”
Int. J. Thermodyn.
,
10
(
4
), pp.
177
185
.
11.
Kapooria
,
R. K.
,
Kumar
,
S. S.
, and
Kasana
,
K. S.
,
2008
, “
An Analysis of a Thermal Power Plant Working on a Rankine Cycle: A Theoretical Investigation
,”
J. Energy South. Africa
,
19
(
1
), pp.
77
83
.
12.
Jin
,
H.
,
Ishida
,
M.
,
Kobayashi
,
M.
, and
Nunokawa
,
M.
,
1997
, “
Exergy Evaluation of Two Current Advanced Power Plants: Supercritical Steam Turbine and Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
250
256
.10.1115/1.2794998
13.
Hecklinger
,
R. S.
, and
Grillo
,
L. M.
,
1983
, “
Thermal Performance Evaluation of MSW-Fired Steam Generators—A New Approach
,”
ASME J. Energy Resour. Technol.
,
105
(
2
), pp.
255
257
.10.1115/1.3230911
14.
Astrom
,
K. J.
, and
Bell
,
R. D.
,
2000
, “
Drum-Boiler Dynamics
,”
Automatica
,
36
, pp.
363
378
.10.1016/S0005-1098(99)00171-5
15.
Luyben
,
W. L.
,
2003
, “
Identification and Tuning of Integrating Processes With Dead Time and Inverse Response
,”
Ind. Eng. Chem. Res.
,
42
, pp.
3030
3035
.10.1021/ie020935j
16.
Aranda
,
E.
,
Frye
,
M.
, and
Qian
,
C.
,
2008
, “
Model Development, State Estimation, and Controller Design of a Nonlinear Utility Boiler System
,” Industrial Technology,
IEEE
International Conference,
Chengdu
,
China
, pp.
1
6
.10.1109/ICIT.2008.4608412
17.
Hemalatha
,
B.
,
Vimala
Juliet
,
A.
, and
Natarajan
,
N.
,
2010
, “
Boiler Level Control Using Labview
,”
Int. J. Comput. Appl.
,
1
(
17
), pp.
85
88
.10.5120/356-540
18.
Maican
,
C.
,
Vinatoru
,
M.
,
Canureci
,
G.
, and
Iancu
,
E.
,
2008
, “
Control System Simulator for Steam Boiler Parameters
,”
12th WSEAS International Conference on Systems
,
Heraklion
,
Greece
, July
22
24
.
19.
Wu
,
M. L.
,
Wei
,
L. L.
,
Huang
,
J. K.
, and
Wu
,
M. Y.
,
2010
, “
The Cascade Three-Elements Fuzzy Auto-Adapted PID Control System for Boiler
,”
Adv. Mater. Res
,
139–141
, pp.
1919
1923
.10.4028/www.scientific.net/AMR.139-141.1919
20.
Elshafei
,
M.
,
Habib
,
M. A.
,
Alzaharnah
,
I.
,
Al-Anizi
,
S.
,
Al-Awwad
,
M. Y.
, and
Hajj
,
M.
,
2010
, “
Optimization of the Swing Rate of Steam Generation Units Using Genetic Algorithms
,”
Proceedings of the IASTED International Conference Control and Applications (CA 2010
), Banff, AB,
Canada
, pp.
1355
1362
.
21.
Habib
,
M. A.
,
Emara-Shabaik
,
H. E.
,
Al-Zaharnah
,
I.
, and
Ayinde
,
T.
,
2009
, “
A Thermal Nonlinear Dynamic Model for Water Tube Drum Boilers
,”
Int. J. Energy Res.
,
34
(
1
), pp.
20
35
.10.1002/er.1548
22.
International Conference on the Properties of Steam
,
1967
,
The 1967 IFC Formulation for Industrial Use: A Formulation of the Thermodynamic Properties of Ordinary Water Substance
,
IFC Secretariat
,
Dusseldorf, Germany
.
23.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Trans.
,
112
(1), pp.
219
228
.10.1115/1.2910348
24.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Automobile Radiators of the Tubular Type
, Vol.
2
,
University of California Publications in Engineering
,
Berkeley, CA
, pp.
443
461
.
25.
Saudi Aramco
,
2006
, “Short Course Materials on Boiler Operation: MEX 104,” November 18, Consulting Service Department, Dhahran, Saudi Arabia.
26.
Astrom
,
K. J.
, and
Eklund
,
K.
,
1972
, “
A Simplified Nonlinear Model of a Drum Boiler-Turbine Unit
,”
Int. J. Control
,
16
(
1
), pp.
145
169
.10.1080/00207177208932249
You do not currently have access to this content.