With the rising cost of fuel and increasing demand for clean energy, solid-state thermoelectric (TE) devices are an attractive option for reducing fuel consumption and CO2 emissions. Although they are reliable energy converters, there are several barriers that have limited their implementation into wide market acceptance for automotive applications. These barriers include: the unsuitability of conventional thermoelectric materials for the automotive waste heat recovery temperature range; the rarity and toxicity of some otherwise suitable materials; and the limited ability to mass-manufacture thermoelectric devices from certain materials. One class of material that has demonstrated significant promise in the waste heat recovery temperature range is skutterudites. These materials have little toxicity, are relatively abundant, and have been investigated by NASA-JPL for the past twenty years as possible thermoelectric materials for space applications. In a recent collaboration between Michigan State University (MSU) and NASA-JPL, the first skutterudite-based 100 W thermoelectric generator (TEG) was constructed. In this paper, we will describe the efforts that have been directed towards: (a) enhancing the technology-readiness level of skutterudites to facilitate mass manufacturing similar to that of Bi2Te3, (b) optimizing skutterudites to improve thermal-to-electric conversion efficiencies for class 8 truck applications, and (c) describing how temperature cycling, oxidation, sublimation, and other barriers to wide market acceptance must be managed. To obtain the maximum performance from these devices, effective heat transfer systems need to be developed for integration of thermoelectric modules into practical generators.

References

References
1.
Pollock
,
D. D.
,
1995
,
CRC Handbook of Thermoelectrics
,
D. M.
Rowe
, ed.,
CRC Press, Boca Raton
,
FL
, pp.
7
17
.
2.
Hendricks
,
T. J.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Resour. Technol.
,
129
(3)
, pp.
223
231
.10.1115/1.2751504
3.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Power Source
,”
ASME J. Energy Resour. Technol.
,
131
(1)
, p.
012401
.10.1115/1.3066392
4.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R.
,
Archibold
,
A.
,
Goswami
,
D. Y.
,
Rahman
,
M.
, and
Stefanakos
,
E.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(3)
, p.
032002
.10.1115/1.4005922
5.
Srinivasan
,
K. K.
,
Mago
,
P. J.
,
Zdaniuk
,
G. J.
,
Chamra
,
L. M.
, and
Midkiff
,
K. C.
,
2008
, “
Improving the Efficiency of the Advanced Injection Low Pilot Ignited Natural Gas Engine Using Organic Rankine Cycles
,”
ASME J. Energy Resour. Technol.
,
130
(2)
, p.
022201
.10.1115/1.2906123
6.
Boretti
,
A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
134
(2)
, p.
022203
.10.1115/1.4005699
7.
Bose
,
P. K.
, and
Banerjee
,
R.
,
2012
, “
An Experimental Investigation on the Role of Hydrogen in the Emission Reduction and Performance Trade-Off Studies in an Existing Diesel Engine Operating in Dual Fuel Mode Under Exhaust Gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
134
(1)
, p.
012601
.10.1115/1.4005246
8.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P.
, and
Smith
,
A.
,
2012
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
(1)
, p.
011301
.10.1115/1.4005082
9.
Hartsig
,
A. T.
,
2008
, “
Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle: An Engine Modeling Approach
,” M.S. thesis, Department of Mechanical Engineering, Michigan State University, East Lansing, MI.
10.
Ren
,
F.
,
Case
,
E. D.
,
Timm
,
E. J.
, and
Schock
,
H. J.
,
2008
, “
Hardness as a Function of Composition for n-type LAST Thermoelectric Material
,”
J. Alloys Compds.
,
455
, pp.
340
345
.10.1016/j.jallcom.2007.01.086
11.
Ren
,
F.
,
Case
,
E. D.
,
Timm
,
E. J.
, and
Schock
,
H. J.
,
2007
, “
Young's Modulus as a Function of Composition for an n-Type Lead-Antimony-Silver-Telluride (LAST) Thermoelectric Material
,”
Philos. Mag.
,
87
, pp.
4907
4934
.10.1080/14786430701589376
12.
Ren
,
F.
,
Hall
,
B. D.
,
Ni
,
J. E.
,
Case
,
E. D.
,
Timm
,
E. J.
,
Schock
,
H. J.
,
Wu
,
C.-I.
,
D'Angelo
,
J. J.
,
Hogan
,
T. P.
,
Trejo
,
R. M.
, and
Lara-Curzio
,
E.
,
2008
, “
Mechanical Characterization of PbTe-based Thermoelectric Materials
,”
Thermoelectric Power Generation, Materials Research Society Proceedings
,
T. P.
Hogan
,
J.
Yang
,
R.
Funahashi
, and
T.
Tritt
, eds.,
Materials Research Society
,
Warrendale, PA
, Vol.
1044
, pp.
121
126
.
13.
Schmidt
,
R. D.
,
Ni
,
J. E.
,
Case
,
E. D.
,
Sakamoto
,
J. S.
,
Kleinow
,
D. C.
,
Wing
,
B. L.
,
Stewart
,
R. C.
, and
Timm
,
E. J.
,
2010
, “
Room Temperature Young's Modulus, Shear Modulus, Poisson's Ratio and Hardness of Ce0.9Fe 3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 Skutterudite Materials
,”
J. Alloys Compds.
,
504
, pp.
303
309
.10.1016/j.jallcom.2010.06.003
14.
Schock
,
H.
,
Hogan
,
T.
,
Case
,
E.
,
Kanatzidis
,
M.
,
Peng
,
F.
,
Ren
,
F.
,
Sakamoto
,
J.
,
Timm
,
E.
, and
Shih
,
T.
,
2008
, “
Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle
,” U.S. Department of Energy, Washington, DC, Quarterly Report, October 10 (submitted).
15.
Hogan
,
T.
, and
Shih
,
T. I.-P.
,
2005
, “
Modeling and Characterization of Power Generation Modules Based on Bulk Materials
,”
Thermoelectric Handbook: Macro to Nano-Structured Materials
,
M.
Rowe
, ed.,
Taylor and Francis Books
,
London
.
16.
Zhu
,
B.
,
Schock
,
H. J.
,
Hogan
,
T.
, and
Shih
,
T. I.-P.
,
2006
, “
Natural Convection and Radiation Heat Transfer in High-Temperature Thermoelectric Couples
,” Aerospace Sciences Meeting, Reno, NV, AIAA Paper No. 2006–0574.
17.
Harris
,
R.
,
Schock
,
H. J.
,
Hogan
,
T.
, and
Shih
,
T. I. -P.
,
2006
, “
Heat Transfer and Electric Current Flow in a Thermoelectric Couple
,” Aerospace Sciences Meeting, Reno, NV,
AIAA
Paper No. 2006–0575. 10.2514/6.2006-575
18.
Hu
,
K.
,
Chi
,
X.
,
Shih
,
T. I.-P.
, and
Schock
,
H. J.
,
2009
, “
Heat Transfer Enhancement in Thermoelectric Power Generation
,” AIAA Paper No. 2009-1210.
19.
Cao
,
D.
, and
Peng
,
F. Z.
,
2009
, “
Zero-Current-Switching Multilevel Modular Switched-Capacitor dc-dc Converter
,” 2009
IEEE
Energy Conversion Congress and Exposition (ECCE)
,
San Jose, CA
.10.1109/ECCE.2009.5316088
20.
Cao
,
D.
, and
Peng
,
F. Z.
,
2009
, “
A Family of Z-Source and Quasi-Z-Source dc-dc Converters
,”
2009 Applied Power Electronics Conference
(
APEC
),
Washington, DC
. 10.1109/APEC.2009.4802800
21.
Schock
,
H.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2010
, “
Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle
,” U.S. Department of Energy, Washington, DC, Quarterly Report, October 29.
22.
Case
,
E. D.
,
Schmidt
,
R.
,
Schock
,
H.
,
Sakamoto
,
J.
, and
Timm
,
E.
,
2011
, “
Mechanical Characterization of Skutterudite Thermoelectric Materials
,” U.S. Department of Energy, Washington, DC, Final Report, March 11.
You do not currently have access to this content.