In the future energy pathway, characterized by flexibility of technologies and fuels, biogas could represent an alternative to conventional natural gas in feeding multiple types of technologies, both traditional thermal machines (chemical reactions), and innovative electrochemical generators such as fuel cells (electrochemical reactions). To compare the two pathways of energy production, two criteria are considered: (a) environmental analysis (emissions) and (b) exergy analysis. The results of the environmental and exergy comparison are presented and discussed in case of two selected transformation processes: partially premixed flames (PPFs, for chemical processes) and solid oxide fuel cells (SOFCs, for electrochemical processes), for a range of operating conditions. From an environmental point of view, the PPF exhaust stream has significant traces of NOx and C2H2, which are precursors of atmosphere pollution, while the SOFC exhaust stream does not contain such chemical species due to the absence of combustion. From a exergy point of view, the utilisation of the biogas in form of electrochemical oxidation in a SOFC indicates significantly higher exergetic efficiency compared to the chemical oxidation in partially premixed flames.

References

References
1.
Som
,
S.
, and
Aggarwal
,
S. K.
,
2007
, “
A Numerical Investigation of Methane Air Partially Premixed Flames at Elevated Pressures
,”
Combust. Sci. Technol.
,
179
(
6
), pp.
1085
1112
.10.1080/00102200600910882
2.
Quesito
,
F.
,
Novaresio
,
V.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Beretta
,
D.
, “
Direct Reforming of Biogas on Ni-Based SOFC Anodes: Modelling of Heterogeneous Reactions and Validation With Experiments
,”
J. Power Sources
(submitted).
3.
Kármán
,
T. V.
,
1921
, “
Über laminare und turbulente Reibung
,”
Z. Angew. Math. Mech.
,
1
(4), pp.
233
–252.10.1002/zamm.19210010401
4.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
5.
Evans
,
G. H.
, and
Grief
,
R.
,
1988
, “
Forced Flow Near a Heated Rotating Disk: A Similarity Solution
,”
Numer. Heat Transfer
,
14
(
3
), pp. 373–387.10.1080/10407788808913650
6.
Kee
,
R. J.
,
Miller
,
J. A.
,
Evans
,
G. H.
, and
Dixon-Lewis
,
G.
,
1989
, “
A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames
,” Proceedings of the 22nd Symposium (International) on Combustion, The
Combustion Institute
,
Pittsburgh, PA
, pp. 1479–1494.10.1016/S0082-0784(89)80158-4
7.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
,
1954
,
Molecular Theory of Gases and Liquids
,
John Wiley and Sons
,
New York
.
8.
Coffee
,
T. P.
, and
Heimerl
,
J. M.
,
1981
, “
Transport Algorithms for Premixed, Laminar Steady-State Flames
,”
Combust. Flame
,
43
, pp.
273
289
.10.1016/0010-2180(81)90027-4
9.
Zhu
,
H.
,
Kee
,
R. J.
,
Janardhanan
,
V. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D. G.
,
2005
, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
152
(
12
), pp.
A2427
A2440
.10.1149/1.2116607
10.
Hecht
,
E. S.
,
Gupta
,
G. K.
,
Zhu
,
H.
,
Dean
,
A. M.
,
Kee
,
R. J.
,
Maier
,
L.
, and
Deutschmann
,
O.
,
2005
, “
Methane Reforming Kinetics Within a Ni-YSZ SOFC Anode Support
,”
Appl. Catal. A
,
295
, pp.
40
51
.10.1016/j.apcata.2005.08.003
11.
DETCHEM,
2012
, accessed April, http://www.detchem.com
12.
Dalle Nogare
,
D.
,
2008
, “
Modeling Catalytic Methane Partial Oxidation With Detailed Chemistry
,” Ph.D. thesis,
Dipartimento dei Principi e Impianti dell'Ingegneria Chimica “I. Sorgato,” Università degli Studi di Padova
, Italy.
13.
Vagelopoulos
,
C. M.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1994
, “
Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique
,”
Proc. Combust. Instit.
,
25
, pp.
1341
1347
.10.1016/S0082-0784(06)80776-9
You do not currently have access to this content.