This study presents fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber (CVCC). The constant volume vessel is a cylinder with inside diameter of 135 mm and inside height of 135 mm. Two end of the vessel are equipped with optical windows. A high speed complementary metal oxide semiconductor (CMOS) camera capable of capturing pictures up to 40,000 frames per second is used to observe flow conditions inside the chamber. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel–air mixture in the vessel, similar to that in a compressed natural gas (CNG) direct-injection (DI) engine. The fuel–air mixture is ignited by centrally located electrodes at a given spark delay timing of 1, 40, 75, and 110 ms. In addition to the four delay times, a 5 min waiting period was used in order to make sure of having laminar homogeneous combustion. Spray development and characterization including spray tip penetration (STP), spray cone angle (SCA), and overall equivalence ratio were investigated under 30–90 bar fuel pressures and 1–5 bar chamber pressure. Flame propagation images and combustion characteristics were determined via pressure-derived parameters and analyzed at a fuel pressure of 90 bar and a chamber pressure of 1 bar at different stratification ratios (S.R.) (from 0% to 100%) at overall equivalence ratios of 0.6, 0.8, and 1.0. Shorter combustion duration and higher combustion pressure were observed in direct injection-type combustion at all fuel air equivalence ratios compared to those of homogeneous combustion.

References

References
1.
Badr
,
O. A.
,
Elsayed
,
N.
, and
Karim
,
G. A.
,
1996
, “
An Investigation of the Lean Operational Limits of Gas-Fueled Spark Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
159
163
.10.1115/1.2792708
2.
Zhao
,
F.
,
Lai
,
M. C.
, and
Harrington
,
D. L.
,
1999
, “
Automotive Spark-Ignited Direct Injection Gasoline Engines
,”
J. Prog. Energy Combust. Sci.
,
25
(
5
), pp.
437
562
.10.1016/S0360-1285(99)00004-0
3.
Huang
,
Z. H.
,
Zeng
,
K.
, and
Yang
,
Z. L.
,
2002
, “
Visualization Study of Natural Gas Direct Injection Combustion
,”
Trans. CSICE
,
20
(
6
), pp.
511
520
.10.1243/09544070360692069
4.
Huang
,
Z. H.
,
Zeng
,
K.
, and
Yang
,
Z. L.
,
2001
, “
Study on Combustion Characteristics of Direct Injection Natural Gas Engine by Using a Rapid Compression Machine
,”
Trans. CSICE
,
19
(
4
), pp.
314
322
.10.1243/095440703321645106
5.
Narayanan
,
G.
, and
Shrestha
,
S.
,
2009
, “
A Simulation Model of a Four-Stroke Spark Ignition Engine Fueled With Landfill Gases and Hydrogen Mixtures
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032203
.10.1115/1.3185344
6.
Gurgenci
,
H.
, and
Aminossadati
,
S. M.
,
2009
, “
Investigating the Use of Methane as Diesel Fuel in Off-Road Haul Road Truck Operations
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032202
.10.1115/1.3185350
7.
Fino
,
D.
,
Russo
,
N.
,
Saracco
,
G.
, and
Specchia
,
V.
,
2006
, “
CNG Engines Exhaust Gas Treatment via Pd-Spinel-Type-Oxide Catalysts
,”
J. Catal. Today
,
117
(
4
), pp.
559
563
.10.1016/j.cattod.2006.06.003
8.
Pourkhesalian
,
A. M.
,
Shamekhi
,
A. H.
, and
Salimi
,
F.
,
2010
, “
Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics
,”
J. Fuel
,
89
(
5
), pp.
1056
1063
.10.1016/j.fuel.2009.11.025
9.
Fino
,
D.
,
Russo
,
N.
,
Saracco
,
G.
, and
Specchia
,
V.
,
2007
, “
Supported Pd-Perovskite Catalyst for CNG Engines' Exhaust Gas Treatment
,”
International Conference on Perovskites at EMPA, Properties and Potential Applications
, Vol.
35
, No.
2–4
, pp.
501
511
.
10.
Zrante
,
P. H. B.
, and
Sodré
,
J. R.
,
2009
, “
Evaluating Carbon Emissions Reduction by Use of Natural Gas as Engine Fuel
,”
J. Natural Gas Sci. Eng.
,
1
(
6
), pp.
216
220
.10.1016/j.jngse.2009.11.002
11.
Zeng
,
K.
,
Huang
,
Z.
,
Liu
,
B.
,
Liu
,
L.
,
Jiang
,
D.
,
Ren
,
Y.
, and
Wang
,
J.
,
2006
, “
Combustion Characteristics of a Direct-Injection Natural Gas Engine Under Various Fuel Injection Timings
,”
J. Appl. Therm. Eng.
,
26
(
8–9
), pp.
806
813
.10.1016/j.applthermaleng.2005.10.011
12.
Wang
,
Z.
,
He
,
Z.
,
Wang
,
J. X.
,
Shuai
,
S.
,
Xu
,
F.
, and
Yang
,
D.
,
2010
, “
Combustion Visualization and Experimental Study on Spark Induced Compression Ignition (SICI) in Gasoline HCCI Engines
,”
J. Energy Convers. Manage.
,
51
(
5
), pp.
908
917
.10.1016/j.enconman.2009.11.029
13.
Kono
,
S.
,
1995
, “
Study of the Stratified Charge and Stable Combustion in DI Gasoline Engines
,”
JSAE Rev.
,
16
(
4
), pp.
363
368
.10.1016/0389-4304(95)00032-3
14.
Boretti
,
A. A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022203
.10.1115/1.4005699
15.
Kamura
,
H.
, and
Takada
,
K.
,
1998
, “
Development of In-Cylinder Gasoline Direct Injection Engine
,”
JSAE Rev.
,
19
(
2
), pp.
175
180
.10.1016/S0389-4304(97)00072-6
16.
Gäfvert
,
M.
,
Årzén
,
K.-E.
,
Pedersen
,
L. M.
, and
Bernhardsson
,
B.
,
2004
, “
Control of GDI Engines Using Torque Feedback Exemplified By Simulations
,”
J. Control Eng. Pract.
,
12
(
2
), pp.
165
180
.10.1016/S0967-0661(03)00020-0
17.
Van Der Wege
,
B. A.
,
Han
,
Z.
,
Lyer
,
C. O.
,
Munoz
,
R. B.
, and
Yi
,
J.
,
2003
, “
Development and Analysis of a Spray-Guided DISI Combustion System Concept
,” SAE Paper No. 2003-01-3105.
18.
Alkidas
,
A. C.
,
2007
, “
Combustion Advancements in Gasoline Engines
,”
J. Energy Convers. Manage.
,
48
(
11
), pp.
2751
2761
.10.1016/j.enconman.2007.07.027
19.
Soylu
,
S.
,
2005
, “
Examination of Combustion Characteristics and Phasing Strategies of a Natural Gas HCCI Engine
,”
J. Energy Convers. Manage.
,
46
(
1
), pp.
101
119
.10.1016/j.enconman.2004.02.013
20.
Kong
,
S. C.
,
2007
, “
A Study of Natural Gas/DME Combustion in HCCI Engines Using CFD With Detailed Chemical Kinetics
,”
J. Fuel
,
86
(
10–11
), pp.
1483
1489
.10.1016/j.fuel.2006.11.015
21.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
.10.1115/1.4006480
22.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Al-Mulki
,
J.
, and
Metghalchi
,
H.
,
2011
, “
Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures
,”
J. Proc. Combust. Inst.
,
33
(
1
), pp.
1021
1027
.10.1016/j.proci.2010.05.105
23.
Parsinejad
,
F.
,
Matlo
,
M.
, and
Metghalchi
,
M.
,
2004
, “
A Mathematical Model for Schlieren and Shadowgraph Images of Transient Expanding Spherical Thin Flames
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
241
247
.10.1115/1.1688368
24.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
1994
,
Thermodynamics: An Engineering Approach
,
2nd ed.
,
McGraw-Hill
,
New York
, p.
669
.
25.
Hui
,
G.
,
Wei
,
G.
,
Xintian
,
I.
, and
Zhang
,
Z. D.
,
2010
, “
Study on Measurement System of the Dynamic Performances for an Electronic Fuel Injector
,”
International Conference on Measuring Technology and Mechatronics Automation
,
Changsha, China
, pp.
608
611
.
26.
Zhang
,
J. Q.
, and
Ouyang
,
G. Y.
,
2009
, “
Optimization Design of the Electronically Controlled Injector
,”
IEEE
International Conference on Mechatronics and Automation,
Changchun, China
,
Aug. 9–12
, pp.
1996
2001
.10.1109/ICMA.2009.5246582
27.
Rahim
,
F.
,
2002
, “
Determination of Burning Speed for Methane/Oxidizer/Diluent Mixtures
,” Ph.D. thesis, Northeastern University, Boston, MA.
28.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
, p.
395
.
29.
Arcoumanis
,
C.
,
Gold
,
M. R.
,
Whitelaw
,
J. H.
, and
Xu
,
H. M.
,
1999
, “
Local Mixture Injection to Extend the Lean Limit of Spark-Ignition Engines
,”
J. Exp. Fluids
,
26
(
1–2
), pp.
126
135
.10.1007/s003480050271
You do not currently have access to this content.