Reactions of CO2 with formation rock may lead to an enhancement in the permeability due to rock dissolution, or damage (reduction in the core permeability) because of the precipitation of reaction products. The reaction is affected by aquifer conditions (pressure, temperature, initial porosity, and permeability), and the injection scheme (injection flow rate, CO2:brine volumetric ratio, and the injection time). The effects of temperature, injection flow rate, and injection scheme on the permeability alteration due to CO2 injection into heterogeneous dolomite rock is addressed experimentally in this paper. Twenty coreflood tests were conducted using Silurian dolomite cores. Thirty pore volumes of CO2 and brine were injected in water alternating gas (WAG) scheme under supercritical conditions at temperatures ranging from 21 to 121 °C, and injection rates of 2.0–5.0 cm3/min. Concentrations of Ca++, Mg++, and Na+ were measured in the core effluent samples. Permeability alteration was evaluated by measuring the permeability of the cores before and after the experiment. Two sources of damage in permeability were noted in this study: (1) due to precipitation of calcium carbonate, and (2) due to migration of clay minerals present in the core. Temperature and injection scheme don't have a clear impact on the core permeability. A good correlation between the initial and final core permeability was noted, and the ratio of final permeability to the initial permeability is lower for low permeability cores.

References

References
1.
MacCracken
,
M. C.
,
1987
, “
The Reality of the Greenhouse Effect
,”
World Petroleum Congress, Houston
,
TX
, Apr. 26–May 1, Paper No. WPC 22416.
2.
United States Environmental Protection Agency (EPA), 2010
, “Greenhouse Gas Emissions. Carbon Dioxide Emissions,” http://www.epa.gov/climatechange/ghgemissions/gases/co2.html
3.
Han
,
T.
,
Hong
,
H.
,
Jin
,
H.
, and
Zhang
,
C.
,
2011
, “
An Advanced Power-Generation System With CO2 Recovery Integrating DME Fueled Chemical-Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012201
.10.1115/1.4003441
4.
Lin
,
W.
,
Huang
,
M.
,
He
,
H.
, and
Gu
,
A.
,
2009
, “
A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
042201
.10.1115/1.4000176
5.
Cohen
,
S. M.
,
Rochelle
,
G. T.
, and
Webber
,
M. E.
,
2010
, “
Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021003
.10.1115/1.4001573
6.
Uddin
,
M.
,
Coombe
,
D.
, and
Wright
,
F.
,
2008
, “
Modeling of CO2-Hydrate Formation in Geological Reservoirs by Injection of CO2 Gas
,”
ASME J. Energy Resour. Technol.
,
130
(
3
), p.
032502
.10.1115/1.2956979
7.
Liu
,
N.
, and
Civan
,
F.
,
2005
, “
Underground Gas Storage Inventory Analysis by a Noniterative Method
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
163
165
.10.1115/1.1875553
8.
Rice
,
W.
,
2003
, “
Proposed System for Hydrogen Production From Methane Hydrate With Sequestering of Carbon Dioxide Hydrate
,”
ASME J. Energy Resour. Technol.
,
125
(
4
), pp.
253
257
.10.1115/1.1615795
9.
Bachu
,
S.
, and
Adams
,
J. J.
,
2003
, “
Sequestration of CO2 in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO2 in Solution
,”
Energy Convers. Manage.
,
44
, pp.
3151
3175
.10.1016/S0196-8904(03)00101-8
10.
Gunter
,
W. D.
,
Wiwchar
,
B.
, and
Perkins
,
E. H.
,
1997
, “
Aquifer Disposal of CO2-Rich Greenhouse Gases: Extension of the Time Scale of Experiment for CO2-Sequestring Reactions by Geochemical Modeling
,”
Mineral Petrol.
,
59
(
1-2
), pp.
121
140
.10.1007/BF01163065
11.
Herzog
,
H.
, and
Golomb
,
D.
,
2004
, “
Carbon Capture and Storage From Fossil Fuel Use
,”
Encyclopedia of Energy
,
Elsevier Science, Inc.
,
New York
, pp.
277
287
.
12.
Qi
,
R.
,
LaForce
,
T. C.
, and
Blunt
,
M. J.
,
2008
, “
Design of Carbon Dioxide Storage in Oilfields
,”
SPE
Annual Technical Conference and Exhibition, Denver
,
CO
, Sept. 21–24, Paper No. 115663-MS.10.2118/115663-MS
13.
Spycher
,
N.
, and
Pruess
,
K.
,
2005
, “
CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12–100 °C and up to 600 Bar
,”
Geochim. Cosmochim. Acta
,
69
(
13
), pp.
3309
3320
.10.1016/j.gca.2005.01.015
14.
Intergovernmental Panel on Climate Change, IPCC
,
2005
,
Special Report on Carbon Dioxide Capture and Storage
,
B.
Metz
,
O.
Davidson
,
H. C.
de Coninck
,
M.
Loos
, and
L. A.
Mayer
, eds.,
Cambridge University Press
,
Cambridge, UK
.
15.
Warren
,
J.
,
2000
, “
Dolomite: Occurrence, Evolution and Economically Important Associations
,”
Earth-Sci. Rev.
,
52
(
1–3
), pp.
1
81
.10.1016/S0012-8252(00)00022-2
16.
Grigg
,
R. B.
, and
Svec
,
R. K.
,
2003
, “
Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs
,”
Annual Technical Progress Report
,
National Petroleum Technology Office
,
Tulsa, OK
, Report No. PRRC 03-20.
17.
Christensen
,
J. R.
,
Stenby
,
E. H.
, and
Skauge
,
A.
,
2001
, “
Review of WAG Field Experience
,”
SPE Reservoir Eval. Eng.
,
4
(
2
), pp.
97
106
.10.2118/71203-PA
18.
Juanes
,
R.
,
Spiteri
,
E. J.
,
Orr
,
F. M.
, Jr.
, and
Blunt
,
M. J.
,
2006
, “
Impact of Relative Permeability Hysteresis on Geological CO2 Storage
,”
Water Resour. Res.
,
42
, p.
W12148
.10.1029/2005WR004806
19.
Mathis
,
R. L.
, and
Sears
,
S. O.
,
1984
, “
Effect of CO2 Flooding on Dolomite Reservoir Rock, Denver Unit, Wasson (San Andres) Field, TX
,”
SPE
Annual Technical Conference and Exhibition, Houston
,
TX
, Sept. 16–19, Paper No. 13132-MS.10.2118/13132-MS
20.
Graue
,
D. J.
, and
Blevins
,
T. R.
,
1978
, “
SACROC Tertiary CO2 Pilot Project
,”
SPE
Symposium on Improved Methods of Oil Recovery, Tulsa
,
OK
, Apr. 16–17, Paper No. 7090-MS.10.2118/7090-MS
21.
Taberner
,
C.
,
Zhang
,
G.
,
Cartwright
,
L.
, and
Xu
,
T.
,
2009
, “
Injection of Supercritical CO2 Into Deep Saline Carbonate Formations, Predictions From Geochemical Modeling
,”
EUROPEC/EAGE Conference and Exhibition, Amsterdam
,
The Netherlands
, June 8-11,
SPE
, Paper No. 121272-MS.10.2118/121272-MS
22.
Bardon
,
C.
,
Corlay
,
P.
,
Longeron
,
D.
, and
Miller
,
B.
,
1994
, “
CO2 Huff ‘n’ Puff Revives Shallow Light-Oil-Depleted Reservoirs
,”
SPE Reservoir Eng.
,
9
(
2
), pp.
91
100
, Paper No. 22650-PA.10.2118/22650-PA
23.
Omole
,
O.
, and
Osoba
,
J. S.
,
1983
, “
Carbon Dioxide—Dolomite Rock Interaction During CO2 Flooding Process
,”
Annual Technical Meeting, Banff
, May 10–13,
SPE
, Paper No. CIM 83-34-17.10.2118/83-34-17
24.
Pokrovsky
,
O. S.
,
Golubev
,
S. V.
,
Schott
,
J.
, and
Castillo
,
A.
,
2009
, “
Calcite, Dolomite and Magnesite Dissolution Kinetics in Aqueous Solutions at Acid to Circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: New Constraints on CO2 Sequestration in Sedimentary Basins
,”
Chem. Geol.
,
265
(
1-2
), pp.
20
32
.10.1016/j.chemgeo.2009.01.013
25.
Pokrovsky
,
O. S.
,
Golubev
,
S. V.
,
Schott
,
J.
, and
Castillo
,
A.
,
2005
, “
Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25 °C and 0 to 50 atm pCO2
,”
Chem. Geol.
,
217
(
3-4
), pp.
239
255
.10.1016/j.chemgeo.2004.12.012
26.
Wellman
,
T. P.
,
Grigg
,
R. B.
,
McPherson
,
B. J.
,
Svec
,
R. K.
, and
Lichtner
,
P. C.
,
2003
, “
Evaluation of CO2-Brine-Reservoir Rock Interaction With Laboratory Flow Tests and Reactive Transport Modeling
,”
International Symposium on Oilfield Chemistry, Houston
,
TX
,
SPE
, Feb. 5–7, Paper No. 80228-MS.10.2118/80228-MS
27.
Kamath
,
J.
,
Nakagawa
,
F. M.
,
Boyer
,
R. E.
, and
Edwards
,
K. A.
,
1998
, “
Laboratory Investigation of Injectivity Losses During WAG in West Texas Dolomites
,”
SPE
Permian Basin Oil and Gas Recovery Conference, Midland
,
TX
, Mar. 23–26, Paper No. 39791-MS.10.2118/39791-MS
28.
Daneshfar
,
J.
,
Hughes
,
R. G.
, and
Civan
,
F.
,
2009
, “
Feasibility Investigation and Modeling Analysis of CO2 Sequestration in Arbuckle Formation Utilizing Salt Water Disposal Wells
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
023301
.10.1115/1.3124115
29.
Seo
,
J. G.
, and
Mamora
,
D. D.
,
2005
, “
Experimental and Simulation Studies of Sequestration of Supercritical Carbon Dioxide in Depleted Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
1
6
.10.1115/1.1790538
30.
Egermann
,
P.
,
Bazin
,
B.
, and
Vizika
,
O.
,
2005
, “
An Experimental Investigation of Reaction-Transport Phenomena During CO2 Injection
,” 14th
SPE
Middle East Oil and Gas Show and Conference
,
Bahrain
, Mar. 12–15, Paper No. 93674-MS.10.2118/93674-MS
31.
Mohamed
,
I. M.
, and
Nasr-El-Din
,
H. A.
,
2012
, “
Permeability Alternation and Trapping Mechanisms During CO2 Injection in Homogenous Limestone Aquifers: Lab and Simulation Studies
,”
Can. Energy Technol. Innov. J.
,
1
(
1
), pp.
41
55
.
32.
Zhou
,
D.
,
Fayers
,
F. J.
, and
Orr
,
F. M.
,
1997
, “
Scaling of Multiphase Flow in Simple Heterogeneous Porous Media
,”
SPE Reservoir Eng.
,
12
(
3
), pp.
173
178
, Paper No. 27833-PA.10.2118/27833-PA
33.
Kuo
,
C. W.
,
Perrin
,
J. C.
, and
Benson
,
S. M.
,
2010
, “
Effect of Gravity, Flow Rate, and Small Scale Heterogeneity on Multiphase Flow of CO2 and Brine
,”
SPE
Western Regional Meeting, Anaheim
,
CA
, May 27–29, Paper No. 132607-MS.10.2118/132607-MS
34.
Knauss
,
K. G.
,
Johnson
,
J. W.
, and
Steefel
,
C. I.
,
2005
, “
Evaluation of the Impact of CO2, Co-Contaminant Gas, Aqueous Fluid and Reservoir Rock Interactions on the Geologic Sequestration of CO2
,”
Chem. Geol.
,
21
(
3-4
), pp.
339
350
.10.1016/j.chemgeo.2004.12.017
35.
Gaus
,
I.
,
Azaroual
,
M.
, and
Czernichowski-Lauriol
,
I.
,
2005
, “
Reactive Transport Modelling of the Impact of CO2 Injection on the Clayey Cap Rock at Sleipner (North Sea)
,”
Chem. Geo.
,
217
(
3–4
), pp.
319
337
.10.1016/j.chemgeo.2004.12.016
36.
Mito
,
S.
,
Xue
,
Z.
, and
Ohsumi
,
T.
,
2008
, “
Case Study of Geochemical Reactions at the Nagaoka CO2 Injection Site, Japan
,”
Int. J. Greenhouse Gas Control
,
2
(
3
), pp.
309
318
.10.1016/j.ijggc.2008.04.007
37.
Kitano
,
Y.
,
Tokuyama
,
A.
, and
Arakaki
,
T.
,
1979
, “
Magnesian Calcite Synthesis From Calcium Bicarbonate Solution Containing Magnesium and Barium Ions
,”
Geochem. J.
,
13
(
1
), pp.
181
185
.10.2343/geochemj.13.181
38.
Jimenez-Lopez
,
C.
,
Romanek
,
C. S.
, and
Caballero
,
E.
,
2006
, “
Carbon Isotope Fractionation in Synthetic Magnesian Calcite
,”
Geochim. Cosmochim. Acta
,
70
(
5
), pp.
1163
1171
.10.1016/j.gca.2005.11.005
You do not currently have access to this content.