The output characteristics of multiple photovoltaic (PV) arrays at partial shading are characterized by multiple steps and peaks. This makes that the maximum power point tracking (MPPT) of a large scale PV system becomes a difficult task. The conventional MPPT control method was unable to track the maximum power point (MPP) under random partial shading conditions, making the output efficiency of the PV system is low. To overcome this difficulty, in this paper, an improved MPPT control method with better performance based on the genetic algorithm (GA) and adaptive particle swarm optimization (APSO) algorithm is proposed to solve the random partial shading problem. The proposed genetic algorithm adaptive particle swarm optimization (GAAPSO) method conveniently can be used in the real-time MPPT control strategy for large scale PV system, and the implementation of the collect circuit is easy to gain the global peak of multiple PV arrays, thereby resulting in lower cost, higher overall efficiency. The proposed GAAPSO method has been experimentally validated by using several illustrative examples. Simulations and experimental results demonstrate that the GAAPSO method provides effective, fast, and perfect tracking.

References

1.
Ahmed
,
N. A.
, and
Miyatake
,
M.
,
2008
, “
A Novel Maximum Power Point Tracking for Photovoltaic Applications Under Partially Shaded Insolation Conditions
,”
Electric Power Syst. Res.
,
78
(
5
), pp.
777
784
.10.1016/j.epsr.2007.05.026
2.
Carannante
,
G.
,
Fraddanno
,
C.
,
Pagano
,
M.
, and
Piegari
,
L.
,
2009
, “
Experimental Performance of MPPT Algorithm for Photovoltaic Sources Subject to Inhomogeneous Insolation
,”
IEEE Trans. Ind. Electron.
,
56
(
11
), pp.
4374
4380
.10.1109/TIE.2009.2019570
3.
Roy Chowdhury
,
S.
, and
Saha
,
H.
,
2010
, “
Maximum Power Point Tracking of Partially Shaded Solar Photovoltaic Arrays
,”
Sol. Energy Mater. Sol. Cells
,
94
(
9
), pp.
1441
1447
.10.1016/j.solmat.2010.04.011
4.
Miyatake
,
M.
,
Veerachary
,
M.
,
Toriumi
,
F.
,
Fujii
,
N.
, and
Ko
,
H.
,
2011
, “
Maximum Power Point Tracking of Multiple Photovoltaic Arrays: A PSO Approach
,”
IEEE Trans. Aerosp. Electron. Syst.
,
47
(
1
), pp.
367
380
.10.1109/TAES.2011.5705681
5.
Dean
,
J.
,
Braun
,
R.
,
Penev
,
M.
,
Kinchin
,
C.
, and
Muñoz
,
D.
,
2011
, “
Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031801
.10.1115/1.4004788
6.
Hong
,
H.
,
Liu
,
Q.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
,”
ASME J. Energy Resour. Technol
,
131
(
1
), p.
012601
.10.1115/1.3068336
7.
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032001
.10.1115/1.4006434
8.
Silvestre
,
S.
,
Boronat
,
A.
, and
Chouder
,
A.
,
2009
, “
Study of Bypass Diodes Configuration on PV Modules
,”
Appl. Energy
,
86
(
9
), pp.
1632
1640
.10.1016/j.apenergy.2009.01.020
9.
Takano
,
I.
,
Kobayashi
,
K.
, and
Sawada
,
Y.
,
2006
, “
A Study of a Two Stage Maximum Power Point Tracking Control of a Photovoltaic System Under Partially Shaded Insolation Conditions
,”
Sol. Energy Mater. Sol. Cells
,
90
(
18-19
), pp.
2975
2988
.10.1016/j.solmat.2006.06.050
10.
Ji
,
Y. H.
,
Jung
,
D. Y.
,
Kim
,
J. G.
,
Kim
,
J. H.
,
Lee
,
T. W.
, and
Won
,
C. Y.
,
2011
, “
A Real Maximum Power Point Tracking Method for Mismatching Compensation in PV Array Under Partially Shaded Conditions
,”
IEEE Trans. Power Electron.
,
26
(
4
), pp.
1001
1009
.10.1109/TPEL.2010.2089537
11.
Patel
,
H.
, and
Agarwal
,
V.
,
2008
, “
Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions
,”
IEEE Trans. Ind. Electron.
,
55
(
4
), pp.
1689
1698
.10.1109/TIE.2008.917118
12.
Syafaruddin
,
Karatepe
,
E.
, and
Hiyama
,
T.
,
2009
, “
Artificial Neural Network-Polar Coordinated Fuzzy Controller Based Maximum Power Point Tracking Control Under Partially Shaded Conditions
,”
IET Renew. Power Gen.
,
3
(
2
), pp.
239
253
.10.1049/iet-rpg:20080065
13.
Patel
,
H.
, and
Agarwal
,
V.
,
2008
, “
matlab-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics
,”
IEEE Trans. Energy Convers.
,
23
(
1
), pp.
302
310
.10.1109/TEC.2007.914308
14.
Hassan
,
M. A.
, and
Abido
,
M. A.
,
2011
, “
Optimal Design of Microgrids in Autonomous and Grid-Connected Modes Using Particle Swarm Optimization
,”
IEEE Trans. Power Electron.
,
26
(
3
), pp.
755
769
.10.1109/TPEL.2010.2100101
15.
Larbes
,
C.
,
Ait Cheikh
,
S. M.
,
Obeidi
,
T.
, and
Zerguerras
,
A.
,
2009
, “
Genetic Algorithms Optimized Fuzzy Logic Control for the Maximum Power Point Tracking in Photovoltaic System
,”
Renewable Energy
,
34
(
10
), pp.
2093
2100
.10.1016/j.renene.2009.01.006
16.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.10.1115/1.4005922
17.
Rahman
,
M. M.
, and
Rahman
,
M. K.
,
2012
, “
Optimizing Hydraulic Fracture to Manage Sand Production by Predicting Critical Drawdown Pressure in Gas Well
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
013101
.10.1115/1.4005239
You do not currently have access to this content.