The chemical potential (free energy) of mixing two aqueous solutions can be extracted via an auto generative capacitive mixing (AGCM) cell using anionic and cationic exchange membranes together with porous carbon electrodes. Alternately, feeding sea and river water through the unit allows for the system to spontaneously deliver charge and discharge the capacitive electrodes so that dc electric work is supplied. Having a stack of eight cells coupled in parallel demonstrated the viability of this technology. An average power density of 0.055 W m−2 was obtained during the peak of the different cycles, though reasonable optimization suggests an expectation of 0.26 W m−2 at 6.2 A m−2. It was found that 83 ± 8% of the theoretical driving potential was obtained during the operating process. By studying the polarization curves during charging and discharging cycles, it was found that optimizing the feed fluid flow is currently among the most beneficial paths to make AGCM a viable salinity difference power source. Another parallel route for increasing the efficiency is lowering the internal ohmic resistances of the cell by design modifications.

References

1.
Wick
,
G. L.
, and
Schmitt
,
W. R.
,
1977
, “
Prospects for Renewable Energy From Sea
,”
Mar. Technol. Soc. J.
,
11
, pp.
16
21
.
2.
Wick
,
G. L.
,
1978
, “
Power From Salinity Gradients
,”
Energy
,
3
, pp.
95
100
.10.1016/0360-5442(78)90059-2
3.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2009
, “
Reverse Electrodialysis: Performance of a Stack With 50 Cells on the Mixing of Sea and River Water
,”
J. Membr. Sci.
,
327
, pp.
136
144
.10.1016/j.memsci.2008.11.015
4.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
, p.
021009
.10.1115/1.4001574
5.
Vellini
,
M.
, and
Tonziello
,
J.
,
2010
, “
Hydrogen Use in an Urban District: Energy and Environmental Comparisons
,”
ASME J. Energy Resour. Technol.
,
132
, p.
042601
.10.1115/1.4003032
6.
Himelic
,
J. B.
, and
Kreith
,
F.
,
2011
, “
Potential Benefits of Plug-In Hybrid Electric Vehicles for Consumers and Electric Power Utilities
,”
ASME J. Energy Resour. Technol.
,
133
, p.
031001
.10.1115/1.4004151
7.
Post
,
J. W.
,
Goeting
,
C. H.
,
Valk
,
J.
,
Goinga
,
S.
,
Veerman
,
J.
,
Hamelers
,
H. V. M.
, and
Hack
,
P. J. F. M.
,
2010
, “
Towards Implementation of Reverse Electrodialysis for Power Generation From Salinity Gradients
,”
Desalination Water Treat.
,
16
, pp.
182
193
.10.5004/dwt.2010.1093
8.
Pattle
,
R. E.
,
1954
, “
Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile
,”
Nature
,
174
, p.
660
.10.1038/174660a0
9.
Norman
,
R. S.
,
1974
, “
Water Salination: A Source of Energy
,”
Science
,
186
, pp.
350
–352.10.1126/science.186.4161.350
10.
Thorsen
,
T.
, and
Holt
,
T.
,
2009
, “
The Potential for Power Production From Salinity Gradients by Pressure Retarded Osmosis
,”
J. Membr. Sci.
,
335
, pp.
103
110
.10.1016/j.memsci.2009.03.003
11.
Achilli
,
A.
, and
Childress
,
A. E.
,
2010
, “
Pressure Retarded Osmosis: From the Vision of Sidney Loeb to the Fist Prototype Installation—Review
,”
Desalination
,
261
, pp.
205
211
.10.1016/j.desal.2010.06.017
12.
Weinstein
,
J. N.
, and
Leitz
,
F. B.
,
1976
, “
Electric Power From Differences in Salinity: The Dialytic Battery
,”
Science
,
191
, pp.
557
–559.10.1126/science.191.4227.557
13.
Lacey
,
R.
,
1980
, “
Energy by Reverse Electrodialysis
,”
Ocean Eng.
,
7
, pp.
1
47
.10.1016/0029-8018(80)90030-X
14.
Gerstandt
,
K.
,
Peinemann
,
K. V.
,
Skilhagen
,
S. E.
,
Thorsen
,
T.
, and
Holt
,
T.
,
2008
, “
Membrane Processes in Energy Supply for an Osmotic Power Plant
,”
Desalination
,
224
, pp.
64
70
.10.1016/j.desal.2007.02.080
15.
Post
,
J. W.
,
Veerman
,
J.
,
Hamelers
,
H. V. M.
,
Euverink
,
G. J. W.
,
Metz
,
S. J.
,
Nijmeijer
,
K.
, and
Buisman
,
C. J. N.
,
2007
, “
Salinity Gradient Power: Evaluation of Pressure-Retarded Osmosis and Reverse Electrodialysis
,”
J. Membr. Sci.
,
288
, pp.
218
230
.10.1016/j.memsci.2006.11.018
16.
La Mantia
,
F.
,
Pasta
,
M.
,
Deshazer
,
H. D.
,
Logan
,
B. E.
, and
Cui
,
Y.
,
2011
, “
Batteries for Efficient Energy Extraction From a Water Salinity Difference
,”
Nano Lett.
,
11
, pp.
1810
1813
.10.1021/nl200500s
17.
Brogioli
,
D.
,
2009
, “
Extracting Renewable Energy From a Salinity Difference Using a Capacitor
,”
Phys. Rev. Lett.
,
103
, p.
058501
.10.1103/PhysRevLett.103.058501
18.
Brogioli
,
D.
,
Zhao
,
R.
, and
Biesheuvel
,
P. M.
,
2011
, “
A Prototype Cell for Extracting Energy From a Water Salinity Difference by Means of Double Layer Expansion of Double Layer in Nanoporous Carbon Electrodes
,”
Energy Environ. Sci.
,
4
, pp.
772
777
.10.1039/c0ee00524j
19.
Boon
,
N.
, and
van Roij
,
R.
,
2011
, “
‘Blue Energy’ From Ion Adsorption and Electrode Charging in Sea and River Water
,”
Mol. Phys.
,
109
, pp.
1229
1241
.10.1080/00268976.2011.554334
20.
Rica
,
R. A.
,
Brogioli
,
D.
,
Ziano
,
R.
,
Salerno
,
D.
, and
Mantegazza
,
F.
,
2012
, “
Ions Transport and Adsorption Mechanisms in Porous Electrodes During Capacitive-Mixing Double Layer Expansion (CDLE)
,”
J. Phys. Chem. C
,
116
, pp.
16934
16938
.10.1021/jp3059849
21.
Sales
,
B. B.
,
Saakes
,
M.
,
Post
,
J. W.
,
Buisman
,
C. J. N.
,
Biesheuvel
,
P. M.
, and
Hamelers
,
H. V. M.
,
2010
, “
Direct Power Production From a Water Salinity Difference in a Membrane-Modified Supercapacitor Flow Cell
,”
Environ. Sci. Technol.
,
44
, pp.
5661
5665
.10.1021/es100852a
22.
Burheim
,
O. S.
,
Seland
,
F.
,
Pharoah
,
J. G.
, and
Kjelstrup
,
S.
,
2012
, “
Improved Electrode Systems for Reverse Electro-Dialysis and Electro-Dialysis
,”
Desalination
,
285
, pp.
147
152
.10.1016/j.desal.2011.09.048
23.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2010
, “
Reverse Electrodialysis: Evaluation of Suitable Electrode Systems
,”
J. Appl. Electrochem.
,
40
, pp.
1461
1474
.10.1007/s10800-010-0124-8
24.
Bijmans
,
M. F. M.
,
Burheim
,
O. S.
,
Bryjak
,
M.
,
Delgado
,
A.
,
Hack
,
P.
,
Mantegazza
,
F.
,
Tenisson
,
S.
, and
Hamelers
,
H.
,
2012
, “
CAPMIX—Deploying Capacitors for Salt Gradient Power Extraction
,”
Energy Procedia
,
20
, pp.
108
115
.10.1016/j.egypro.2012.03.013
25.
Ratkje
,
S. K.
,
Holt
,
T.
, and
Fiksdal
,
L.
,
1984
, “
Effect of Biofilm Formation on Salinity Power Plant Output on a Laboratory Scale
,” Laboratory of Physical Chemistry, The Norwegian Institute of Technology, Technical Report No. 121, pp.
1
14
.
26.
Ratkje
,
S. K.
,
Holt
,
T.
, and
Fiksdal
,
L.
,
1986
, “
Effect of Biofilm Formation on Salinity Power Plant Output on a Laboratory Scale
,”
AIChE Symp. Ser.
,
248
, pp.
39
44
.
27.
Lee
,
S.
, and
Elimelech
,
M.
,
2007
, “
Salt Cleaning of Organic-Fouled Reverse Osmosis Membranes
,”
Water Res.
,
41
, pp.
1134
1142
.10.1016/j.watres.2006.11.043
28.
Mi
,
B.
, and
Elimelech
,
M.
,
2010
, “
Organic Fouling of Forward Osmosis Membranes: Fouling Reversibility and Cleaning Without Chemical Reagents
,”
J. Membr. Sci.
,
348
, pp.
337
345
.10.1016/j.memsci.2009.11.021
29.
Veerman
,
J.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2011
, “
Reverse Electrodialysis: A Validated Process Model for Design and Optimization
,”
Chem. Eng. J.
,
166
, pp.
256
268
.10.1016/j.cej.2010.10.071
30.
Veerman
,
J.
,
Post
,
J. W.
,
Saakes
,
M.
,
Metz
,
S. J.
, and
Harmsen
,
G. J.
,
2008
, “
Reducing Power Losses Caused by Ionic Shortcut Currents in Reverse Electrodialysis Stacks by a Validated Model
,”
J. Membr. Sci.
,
310
, pp.
418
430
.10.1016/j.memsci.2007.11.032
31.
Kotas
,
T. J.
,
1995
,
The Exergy Method for Thermal Plant Analysis
,
Krieger Publishing Company
, Malabar, FL.
32.
Margarone
,
M.
,
Magi
,
S.
,
Gorla
,
G.
,
Biffi
,
S.
,
Siboni
,
P.
,
Valenti
,
G.
,
Romano
,
M.
,
Giuffrida
,
A.
,
Negri
,
E.
, and
Macchi
,
E.
,
2011
, “
Revamping, Energy Efficiency, and Exergy Analysis of an Existing Upstream Gas Treatment Facility
,”
ASME J. Energy Resour. Technol.
,
133
, p.
012001
.10.1115/1.4003627
33.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
, p.
032002
.10.1115/1.4005922
34.
Khazaee
,
I.
,
2012
, “
Experimental Investigation of Irreversibility of a Proton Exchange Membrane Fuel Cell
,”
ASME J. Energy Resour. Technol.
,
134
, p.
024502
.10.1115/1.4006045
35.
Kjelstrup
,
S.
, and
Bedeaux
,
D.
,
2008
,
Non-Equilibrium Thermodynamics of Heterogeneous Systems
(Series on Advances in Statistical Mechanics)
, Vol. 16,
World Scientific
, Hackensack, NJ.
36.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
,
2004
,
Electrochemical Systems
, 3rd ed.,
John Wiley and Sons Inc.
, Hoboken, NJ.
37.
Długołe¸cki
,
P.
,
Nymeijer
,
K.
,
Metz
,
S.
, and
Wessling
,
M.
,
2008
, “
Current Status of Ion Exchange Membranes for Power Generation From Salinity Gradients
,”
J. Membr. Sci.
,
319
, pp.
214
222
.10.1016/j.memsci.2008.03.037
38.
Hamann
,
C. H.
,
Hamnet
,
A.
, and
Vielstich
,
W.
,
1998
,
Electrochemistry
, 2nd ed.,
Wiley-VCH
,
New York
.
39.
Tipler
,
P. A.
,
1999
,
Physics for Scientists and Engineers
, 4th ed.,
W. H. Freeman and Company
, New York.
40.
White
,
F. M.
,
1986
,
Fluid Mechanics
, 2nd ed.,
McGraw-Hill, Inc.
,
New York
.
41.
Sorgun
,
M.
,
Ozbayoglu
,
M. E.
, and
Aydin
,
I.
,
2010
, “
Modeling and Experimental Study of Newtonian Fluid Flow in Annulus
,”
ASME J. Energy Resour. Technol.
,
132
, p.
033102
.10.1115/1.4002243
42.
Box
,
G. E. P.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
,
1978
,
Statistics for Experimenters
, 1st ed.,
Wiley Interscience
, New York.
You do not currently have access to this content.