A photobioreactor (PBR) for microalgae culture is a highly efficient system for biomass production. In the present study, the performance of an airlift (ALR) (with a centric-tube column) and a bubble column (BC) photobioreactors were compared considering Nannochloropsis sp. growth. The experiments were carried out keeping average light intensity, temperature, volume culture, and CO2 supply constant, while cell concentration and pH level were measured and examined. Furthermore, a computational fluid dynamics (CFD) simulation in cfx, ansys 11.0, was developed using a multiphase flow model with an Eulerian approach to evaluate the hydrodynamic behavior of both systems. The results showed that a higher cell concentration (375 × 105 cell/ml) was obtained in the airlift PBR yielding a better growth rate than the bubble column PBR. In terms of hydrodynamic performance, the existence of the centric-tube in the airlift system shows a well-defined flow pattern, better light distribution cycle, and more effective mixing. These hydrodynamic characteristic of the airlift PBR may allow a better yield for the microalgae biomass production.

References

References
1.
Mata
,
T. M.
,
Martins
,
A. A.
, and
Caetano
,
N. S.
,
2010
, “
Microalgae for Biodiesel Production and Other Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
217
232
.10.1016/j.rser.2009.07.020
2.
Cheng
,
K. C.
, and
Ogden
,
K. L.
,
2011
, “
Algal Biofuels: The Research
,”
Chem. Eng. Prog.
,
107
, pp.
42
47
.
3.
Bilanovic
,
D.
,
Andargatchew
,
A.
,
Kroeger
,
T.
, and
Shelef
,
G.
,
2009
, “
Freshwater and Marine Microalgae Sequestering of CO2 at Different C and N Concentrations—Response Surface Methodology Analysis
,”
Energy Convers. Manage.
,
50
, pp.
262
267
.10.1016/j.enconman.2008.09.024
4.
Cohen
,
S. M.
,
Rochelle
,
G. T.
, and
Webber
,
M. E.
,
2010
, “
Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021003
.10.1115/1.4001573
5.
De Morais
,
M. G.
, and
Costa
,
J. A. V.
,
2007
, “
Carbon Dioxide Fixation by Chlorella Kessleri, C. Vulgaris, Scenedesmus Obliquus and Spirulina Sp. Cultivated in Flasks and Vertical Tubular Photobioreactors
,”
Biotechnol. Lett.
,
29
, pp.
1349
1352
.10.1007/s10529-007-9394-6
6.
De Morais
,
M. G.
, and
Costa
,
J. A. V.
,
2007
, “
Biofixation of Carbon Dioxide by Spirulina Sp. and Scenedesmus Obliquus Cultivated in a Three-Stage Serial Tubular Photobioreactor
,”
J. Biotechnol.
,
129
(
3
), pp.
439
445
.10.1016/j.jbiotec.2007.01.009
7.
Huntley
,
M. E.
, and
Redalje
,
D. G.
,
2006
, “
CO2 Mitigation and Renewable Oil From Photosynthetic Microbes: A New Appraisal
,”
Mitigation Adapt. Strategies Global Change
,
12
, pp.
573
608
.10.1007/s11027-006-7304-1
8.
Ma
,
J.
, and
Hemmers
,
O.
,
2011
, “
Technoeconomic Analysis of Microalgae Cofiring Process for Fossil Fuel-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
011801
.10.1115/1.4003729
9.
Maeda
,
K.
,
Owada
,
M.
,
Kimura
,
N.
,
Omata
,
K.
, and
Karube
,
I.
,
1995
, “
CO2 Fixation From the Flue Gas on Coal-Fired Thermal Power Plant by Microalgae
,”
Energy Convers. Manage.
,
36
, pp.
717
720
.10.1016/0196-8904(95)00105-M
10.
Michiki
,
H.
,
1995
, “
Biological CO2 Fixation and Utilization Project
,”
Energy Convers. Manage.
,
36
, pp.
701
705
.10.1016/0196-8904(95)00102-J
11.
Sawayama
,
S.
,
Inoue
,
S.
,
Dote
,
Y.
, and
Yokoyama
,
S.-Y.
,
1995
, “
CO2 Fixation and Oil Production Through Microalga
,”
Energy Convers. Manage.
,
36
(
6–9
), pp.
729
731
.10.1016/0196-8904(95)00108-P
12.
Wang
,
B.
,
Li
,
Y.
,
Wu
,
N.
, and
Lan
,
C.
,
2008
, “
CO2 Bio-Mitigation Using Microalgae
,”
Appl. Microbiol. Biotechnol.
,
79
(
5
), pp.
707
718
.10.1007/s00253-008-1518-y
13.
Chisti
,
Y.
,
2007
, “
Biodiesel From Microalgae
,”
Biotechnol. Adv.
,
25
(
3
), pp.
294
306
.10.1016/j.biotechadv.2007.02.001
14.
Hossain
,
A. B. M.
,
Salleh
,
A.
,
Boyce
,
A. N.
,
Chowdhury
,
P.
, and
Naqiuddin
,
M.
,
2008
, “
Biodiesel Fuel Production From Algae as Renewable Energy
,”
Am. J. Biochem. Biotechnol.
,
4
, pp.
250
254
.10.3844/ajbbsp.2008.250.254
15.
Meng
,
X.
,
Yang
,
J.
,
Xu
,
X.
,
Zhang
,
L.
,
Nie
,
Q.
, and
Xian
,
M.
,
2009
, “
Biodiesel Production From Oleaginous Microorganisms
,”
Renewable Energy
,
34
(
1
), pp.
1
5
.10.1016/j.renene.2008.04.014
16.
Canakci
,
M.
, and
Sanli
,
H.
,
2008
, “
Biodiesel Production From Various Feedstocks and Their Effects on the Fuel Properties
,”
J. Ind. Microbiol. Biotechnol.
,
35
, pp.
431
441
.10.1007/s10295-008-0337-6
17.
Vasudevan
,
P.
, and
Briggs
,
M.
,
2008
, “
Biodiesel Production—Current State of the Art and Challenges
,”
J. Ind. Microbiol. Biotechnol.
,
35
(
5
), pp.
421
430
.10.1007/s10295-008-0312-2
18.
Gouveia
,
L.
, and
Oliveira
,
A. C.
,
2009
, “
Microalgae as a Raw Material for Biofuels Production
,”
J. Ind. Microbiol. Biotechnol.
,
36
, pp.
269
274
.10.1007/s10295-008-0495-6
19.
Rodolfi
,
L.
,
Chini Zittelli
,
G.
,
Bassi
,
N.
,
Padovani
,
G.
,
Biondi
,
N.
,
Bonini
,
G.
, and
Tredici
,
M. R.
,
2009
, “
Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor
,”
Biotechnol. Bioeng.
,
102
, pp.
100
112
.10.1002/bit.22033
20.
Olguín
,
E. J.
,
Galicia
,
S.
,
Mercado
,
G.
, and
Pérez
,
T.
,
2003
, “
Annual Productivity of Spirulina (Arthrospira) and Nutrient Removal in a Pig Wastewater Recycling Process Under Tropical Conditions
,”
J. Appl. Phycol.
,
15
, pp.
249
257
.10.1023/A:1023856702544
21.
Muñoz
,
R.
,
Köllner
,
C.
, and
Guieysse
,
B.
,
2009
, “
Biofilm Photobioreactors for the Treatment of Industrial Wastewaters
,”
J. Hazard. Mater.
,
161
(
1
), pp.
29
34
.10.1016/j.jhazmat.2008.03.018
22.
Olaizola
,
M.
,
2003
, “
Commercial Development of Microalgal Biotechnology: From the Test Tube to the Marketplace
,”
Biomol. Eng.
,
20
(
4–6
), pp.
459
466
.10.1016/S1389-0344(03)00076-5
23.
Laliberté
,
G.
,
Lessard
,
P.
,
De La Noue
,
J.
, and
Sylvestre
,
S.
,
1997
, “
Effect of Phosphorus Addition on Nutrient Removal From Wastewater With the Cyanobacterium Phormidium Bohneri
,”
Bioresour. Technol.
,
59
, pp.
227
233
.10.1016/S0960-8524(96)00144-7
24.
Lundquist
,
T. J.
,
2008
, “
Production of Algae in Conjunction With Wastewater Treatment
,” Renewable Energy Laboratory and Air Force Office of Scientific Research Workshop: Algal Oil for Jet Fuel Production, Arlington, VA, Feb. 19–21.
25.
Hodaifa
,
G.
,
Martínez
,
M. A. E.
, and
Sánchez
,
S.
,
2008
, “
Use of Industrial Wastewater From Olive-Oil Extraction for Biomass Production of Scenedesmus Obliquus
,”
Bioresour. Technol.
,
99
, pp.
1111
1117
.10.1016/j.biortech.2007.02.020
26.
Lee
,
Y.-K.
,
1997
, “
Commercial Production of Microalgae in the Asia-Pacific Rim
,”
J. Appl. Phycol.
,
9
(
5
), pp.
403
411
.10.1023/A:1007900423275
27.
Borowitzka
,
M. A.
,
1999
, “
Commercial Production of Microalgae: Ponds, Tanks, Tubes and Fermenters
,”
J. Biotechnol.
,
70
(
1–3
), pp.
313
321
.10.1016/S0168-1656(99)00083-8
28.
Pulz
,
O.
, and
Gross
,
W.
,
2004
, “
Valuable Products From Biotechnology of Microalgae
,”
Appl. Microbiol. Biotechnol.
,
65
(
6
), pp.
635
648
.10.1007/s00253-004-1647-x
29.
De Pauw
,
N.
,
Morales
,
J.
, and
Persoone
,
G.
,
1984
, “
Mass Culture of Microalgae in Aquaculture Systems: Progress and Constraints
,”
Hydrobiologia
,
116/117
, pp.
121
134
.10.1007/BF00027650
30.
Borowitzka
,
M. A.
,
1997
, “
Microalgae for Aquaculture: Opportunities and Constraints
,”
J. Appl. Phycol.
,
9
, pp.
393
401
.10.1023/A:1007921728300
31.
Richmond
,
A.
,
2000
, “
Microalgal Biotechnology at the Turn of the Millennium: A Personal View
,”
J. Appl. Phycol.
,
12
(
3
), pp.
441
451
.10.1023/A:1008123131307
32.
Brown
,
M. R.
,
Jeffrey
,
S. W.
,
Volkman
,
J. K.
, and
Dunstan
,
G. A.
,
1997
, “
Nutritional Properties of Microalgae for Mariculture
,”
Aquaculture
,
151
, pp.
315
331
.10.1016/S0044-8486(96)01501-3
33.
Oncel
,
S.
, and
Sukan
,
F. V.
,
2008
, “
Comparison of Two Different Pneumatically Mixed Column Photobioreactors for the Cultivation of Artrospira Platensis (Spirulina Platensis)
,”
Bioresour. Technol.
,
99
(
11
), pp.
4755
–4760
.10.1016/j.biortech.2007.09.068
34.
Richmond
,
A.
,
2004
,
Handbook of Microalgal Culture: Biotechnology and Applied Phycology
,
Blackwell Science
, Ames, IA.
35.
Le
,
E.
,
Park
,
C.
, and
Hiibel
,
S.
,
2012
, “
Investigation of the Effect of Growth From Low to High Biomass Concentration Inside a Photobioreactor on Hydrodynamic Properties of Scenedesmus Obliquus
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
011801
.10.1115/1.4005245
36.
Ogbonna
,
J. C.
, and
Tanaka
,
H.
,
2000
, “
Light Requirement and Photosynthetic Cell Cultivation—Development of Processes for Efficient Light Utilization in Photobioreactors
,”
J. Appl. Phycol.
,
12
(
3
), pp.
207
218
.10.1023/A:1008194627239
37.
Pupo
,
O.
,
García
,
S.
,
Valencia
,
G.
, and
Bula
,
A.
,
2011
, “
Conceptual Design of Photobioreactor for Algae Cultivation
,”
ASME
International Mechanical Congress and Exposition (IMECE2011), Denver, CO, Nov. 11–17, Vol. 4, Paper No. IMECE2011-64484, pp.
197
202
.10.1115/IMECE2011-64484
38.
Chisti
,
Y.
,
1989
,
Airlift Bioreactor
,
Elservier Applied Science
,
London
.
39.
Posten
,
C.
,
2009
, “
Design Principles of Photo-Bioreactors for Cultivation of Microalgae
,”
Eng. Life Sci.
,
9
(
3
), pp.
165
177
.10.1002/elsc.200900003
40.
Travieso
,
L.
,
Hall
,
D. O.
,
Rao
,
K. K.
,
BeníTez
,
F.
,
Sánchez
,
E.
, and
Borja
,
R.
,
2001
, “
A Helical Tubular Photobioreactor Producing Spirulina in a Semicontinuous Mode
,”
Int. Biodeter. Biodegrad.
,
47
(
3
), pp.
151
155
.10.1016/S0964-8305(01)00043-9
41.
Ugwu
,
C. U.
,
Aoyagi
,
H.
, and
Uchiyama
,
H.
,
2008
, “
Photobioreactors for Mass Cultivation of Algae
,”
Bioresour. Technol.
,
99
(
10
), pp.
4021
4028
.10.1016/j.biortech.2007.01.046
42.
Pulz
,
O.
,
2001
, “
Photobioreactors: Production Systems for Phototrophic Microorganisms
,”
Appl. Microbiol. Biotechnol.
,
57
, pp.
287
293
.10.1007/s002530100702
43.
Sánchez Mirón
,
A.
,
García Camacho
,
F.
,
Contreras Gómez
,
A.
,
Molina Grima
,
E.
, and
Chisti
,
Y.
,
2000
, “
Bubble-Column and Airlift Photobioreactors for Algal Culture
,”
AIChE J.
,
46
(
9
), pp.
1872
1887
.10.1002/aic.690460915
44.
Sánchez Mirón
,
A.
,
Cerón García
,
M.-C.
,
García Camacho
,
F.
,
Molina Grima
,
E.
, and
Chisti
,
Y.
,
2002
, “
Growth and Biochemical Characterization of Microalgal Biomass Produced in Bubble Column and Airlift Photobioreactors: Studies in Fed-Batch Culture
,”
Enzyme Microb. Technol.
,
31
(
7
), pp.
1015
1023
.10.1016/S0141-0229(02)00229-6
45.
Degen
,
J.
,
Uebele
,
A.
,
Retze
,
A.
,
Schmid-Staiger
,
U.
, and
Trösch
,
W.
,
2001
, “
A Novel Airlift Photobioreactor With Baffles for Improved Light Utilization Through the Flashing Light Effect
,”
J. Biotechnol.
,
92
(
2
), pp.
89
94
.10.1016/S0168-1656(01)00350-9
46.
Barbosa
,
M. J.
,
Hoogakker
,
J.
, and
Wijffels
,
R. H.
,
2003
, “
Optimisation of Cultivation Parameters in Photobioreactors for Microalgae Cultivation Using the a-Stat Technique
,”
Biomol. Eng.
,
20
(
4–6
), pp.
115
123
.10.1016/S1389-0344(03)00033-9
47.
Molina Grima
,
E.
,
Belarbi
,
E. H.
,
Acién Fernández
,
F. G.
,
Robles Medina
,
A.
, and
Chisti
,
Y.
,
2003
, “
Recovery of Microalgal Biomass and Metabolites: Process Options and Economics
,”
Biotechnol. Adv.
,
20
(
7–8
), pp.
491
515
.10.1016/S0734-9750(02)00050-2
48.
Cheng-Wu
,
Z.
,
Zmora
,
O.
,
Kopel
,
R.
, and
Richmond
,
A.
,
2001
, “
An Industrial-Size Flat Plate Glass Reactor for Mass Production of Nannochloropsis sp. (Eustigmatophyceae)
,”
Aquaculture
,
195
(
1
), pp.
35
49
.10.1016/S0044-8486(00)00533-0
49.
Zittelli
,
G. C.
,
Rodolfi
,
L.
, and
Tredici
,
M. R.
,
2003
, “
Mass Cultivation of Nannochloropsis sp. in Annular Reactors
,”
J. Appl. Phycol.
,
15
(
2
), pp.
107
114
.10.1023/A:1023830707022
50.
Garcia
,
R.
,
2003
, “
Manual de metodología y alternativas para el cultivo de algas unicelulares y su uso en la acuacultura
,” SENA, Cartagena, Technical Report No. 30012003.
51.
Andersen
,
R.
,
2005
,
Algal Culturing Techniques
,
1st ed., Elservier/Academic Press
, Burlington, MA.
52.
Bitog
,
J. P.
,
Lee
,
I. B.
,
Lee
,
C. G.
,
Kim
,
K. S.
,
Hwang
,
H. S.
,
Hong
,
S. W.
,
Seo
,
I. H.
,
Kwon
,
K. S.
, and
Mostafa
,
E.
,
2011
, “
Application of Computational Fluid Dynamics for Modeling and Designing Photobioreactors for Microalgae Production: A Review
,”
Comput. Electron. Agric.
,
76
(
2
), pp.
131
147
.10.1016/j.compag.2011.01.015
53.
Caridad
,
J.
, and
Kenyery
,
F.
,
2004
, “
CFD Analysis of Electric Submersible Pumps (ESP) Handling Two-Phase Mixtures
,”
ASME J. Energy Resour. Technol.
,
126
(
2
), pp.
99
104
.10.1115/1.1725156
54.
Zaghloul
,
J.
,
Adewumi
,
M.
, and
Ityokumbul
,
M. T.
,
2008
, “
Hydrodynamic Modeling of Three-Phase Flow in Production and Gathering Pipelines
,”
ASME J. Energy Resour. Technol.
,
130
(
4
), p.
043004
.10.1115/1.3000135
55.
García
,
S.
,
Pupo
,
O.
,
Paternina
,
E.
,
Bula
,
A.
, and
Acuña
,
F.
,
2012
, “
CFD Simulation of Multiphase Flow in an Airlift Column Photobioreactor for the Cultivation of Microalgae
,” ESFuel Cell, San Diego, CA, July 23–26.
56.
Luo
,
H.-P.
, and
Al-Dahhan
,
M. H.
,
2011
, “
Verification and Validation of CFD Simulations for Local Flow Dynamics in a Draft Tube Airlift Bioreactor
,”
Chem. Eng. Sci.
,
66
(
5
), pp.
907
923
.10.1016/j.ces.2010.11.038
57.
Anandarajah
,
K.
,
Mahendraperumal
,
G.
,
Sommerfeld
,
M.
, and
Hu
,
Q.
,
2012
, “
Characterization of Microalga Nannochloropsis sp. Mutants for Improved Production of Biofuels
,”
Appl. Energy
,
96
, pp.
371
377
.10.1016/j.apenergy.2012.02.057
You do not currently have access to this content.