This study evaluates the integral use of the sugarcane bagasse on the productive process of a cogeneration power plant in an Ecuadorian Sugar Company. Thermoelectric power plants burning biomass require a large initial investment and, for example, this initial investment requires $800/kW, which is double the initial investment of a conventional thermoelectric power plant that is $400/kW, and almost similar to the initial cost of a hydroelectric power plant that is $1000/kW. A thermoeconomic study was made on the production of electricity and the sales of the exceeding 27 MW average. From the results, it was concluded that generated electricity costs are $0.0443/kW h, in comparison with the costs of the supplied electricity through fossil power plants with values in the range $0.03–$0.15/kW h and hydroelectric power plants with a value of about $0.02/kW h. Cogeneration power plants burning sugarcane bagasse could contribute to the mitigation of climatic change. This specific case study shows the reduction of the prospective emissions of greenhouse effect gases in the amount of 55,188 ton of CO2 equivalent per year.

References

References
1.
Puga
,
C.
,
2004
, “
Generación de Energía a Partir de Bagazo de Caña de Azúcar
,”
San Carlos S.A.
, pp.
1
5
.
2.
Horta Nogueira
,
L.
, and
Teixeira
N.
,
2004
, “
Cogeração
,”
Eletrobrás, PROCEL
, pp.
26
38
.
3.
Altafini
,
R.
, “
Estudo Computacional dos Ciclos Combinados Gás/Vapor na Cogeração de Calor e Potência
,”
Caixas do Sul, RS, Brasil
, pp.
1
7
.
4.
Ma
,
J.
, and
Hemmers
,
O.
,
2011
, “
Technoeconomic Analysis of Microalgae Cofiring Process for Fossil Fuel-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
011801
.10.1115/1.4003729
5.
Kotas
,
J.
,
1995
,
The Exergy Method of Thermal Plant Analysis
,
Krieger
,
Malabor, FL
, pp.
1
287
.
6.
Frangopoulos
,
C.
,
1987
, “
Thermoeconomic Functional Analysis and Optimization
,”
Energy
,
12
, pp.
563
571
.10.1016/0360-5442(87)90097-1
7.
Remiro
,
J.
,
2007
, “
Control del Rendimiento y Diagnóstico Termoeconómico de Centrales Termoeléctricas
,”
GITSE
,
18
(
1
), pp.
1
10
.
8.
Valero
A.
,
1986
, “
A General Theory of Exergy Savings: I. On the Exergetic Cost; II. On the Thermoeconomic Cost; III. Energy Saving and Thermo-Economics
,”
Proc. ASME-WAM
,
Anaheim, CA
, Vol.
2
, Second Law Analysis and Modeling, pp.
1
21
.
9.
Lozano
,
M. A.
, and
Valero
,
A.
,
1993
, “
Theory of the Exergetic Cost
,”
Energy
,
18
(
9
), pp.
939
960
.10.1016/0360-5442(93)90006-Y
10.
Valero
,
A.
,
Serra
,
L.
, and
Uche
,
J.
,
2006
, “
Fundamentals of Exergy Cost Accounting and Thermoeconomics. Part II: Applications
,”
ASME J. Energy Resour. Technol.
,
128
, pp.
9
15
.10.1115/1.2134731
11.
Dean
,
J.
,
Braun
,
R.
,
Penev
,
M.
,
Kinchin
,
C.
, and
Muñoz
,
D.
,
2011
, “
Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031801
.10.1115/1.4004788
12.
Australian Standards AS 4323.2 Method 2.
13.
Kehlhofer
,
R.
,
Warner
,
J.
,
Nielsen
,
H.
, and
Bachmann
,
R.
,
1999
,
Combined—Cycle Gas Steam Turbine Power Plants
,
2nd ed.
,
Penn Well Company
,
Tulsa, OK
, pp.
1
288
.
14.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Smith
,
A.
,
2012
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
011301
.10.1115/1.4005082
You do not currently have access to this content.