This paper presents a simple analytical method to model the non-Darcy flow effect on the production performance of hydraulically fractured wells by modifying the fracture conductivity. The method is suitable to conveniently incorporate the non-Darcy flow effect in a production prediction model usually used for fracture treatment design and optimization. The method is validated against published information of field productivity and production prediction by other complex methods. The method is then used to demonstrate that the non-Darcy effect is one of the major sources for the loss of fracture conductivity, even at a low flow rate well, and hence the source for discrepancy between the predicted and actual productivities. Finally, the implication of neglecting the non-Darcy effect in fracture treatment optimization is also investigated, emphasizing the need to incorporate this effect even for low flow rate wells.

References

References
1.
Rahman
,
M. M.
,
Rahman
,
M. K.
, and
Rahman
,
S. S.
,
2001
, “
An Integrated Model for Multiobjective Design Optimization of Hydraulic Fracturing
,”
J. Pet. Sci. Eng.
,
31
, pp.
41
62
.10.1016/S0920-4105(01)00140-1
2.
Vincent
,
M. C.
,
Pearson
,
C. M.
, and
Kullman
,
J.
,
1999
, “
Non-Darcy and Multiphase Flow in Propped Fractures: Case Studies Illustrate the Dramatic Effect on Well Productivity
,”
SPE
Western Regional Meeting,
Alaska
,
May 26–28
, SPE Paper No. 54630-MS.10.2118/54630-MS
3.
Vincent
,
M. C.
,
2002
, “
Proving It—A Review of 80 Published Field Studies Demonstrating the Importance of Increased Fracture Conductivity
,”
SPE
Annual Technical Conference and Exhibition,
Sept. 29–Oct. 2
, SPE Paper No. 77675-MS.10.2118/77675-MS
4.
Handren
,
P.
,
Pearson
,
C. M.
,
Kullman
,
J.
,
Coleman
,
R. J.
,
Foreman
,
J.
,
Froebel
,
K.
, and
Caron
,
J.
,
2001
, “
The Impact of Non-Darcy Flow on Production From Hydraulically Fractured Gas Wells
,”
SPE
Production and Operations Symposium,
Oklahoma
,
Mar. 25–28
, SPE Paper No. 67299-MS.10.2118/67299-MS
5.
Holditch
,
S. A.
, and
Morse
,
R. A.
,
1976
, “
The Effect of Non-Darcy Flow on the Behaviour of Hydraulically Fractured Gas Wells
,”
J. Pet. Technol.
,
28
, pp.
1169
1179
.10.2118/5586-PA
6.
Agarwal
,
R. G.
,
Gardner
,
D. C.
,
Kleinsteiber
,
S. W.
, and
Fussel
,
D. D.
,
1998
, “
Analyzing Well Production Data Using Combined Type Curve and Decline Curve Analysis Concepts
,”
SPE
Annual Technical Conference and Exhibition,
Louisiana
,
Sept. 27–30
, SPE Paper No. 49222-MS.10.2118/49222-MS
7.
Umnuayponwiwat
,
S.
,
Ozkan
,
E.
,
Pearson
,
C. M.
, and
Vincent
,
M.
,
2000
, “
Effect of Non-Darcy Flow on the Interpretation of Transient Pressure Responses of Hydraulically Fractured Wells
,”
SPE
Annual Technical Conference and Exhibition,
Texas
,
Oct. 1–4
, SPE Paper No. 63176-MS.10.2118/63176-MS
8.
Gil
,
J. A.
,
Ozkan
,
E.
, and
Raghavan
,
R.
,
2003
, “
Fractured Well-Test Design and Analysis in the Presence of Non-Darcy Flow
,”
SPE Res. Eval. Eng.
,
6
(
3
), pp.
185
196
.10.2118/84846-PA
9.
Friedel
,
T.
, and
Voight
,
H.
,
2006
, “
Investigation of Non-Darcy Flow in Tight-Gas Reservoirs With Fractured Wells
,”
J. Pet. Sci. Eng.
,
54
(
3–4
), pp.
112
128
.10.1016/j.petrol.2006.07.002
10.
Lopez-Hernandez
,
H. D.
,
Valko
,
P.
, and
Pham
,
T. T.
,
2004
, “
Optimum Fracture Treatment Design Minimizes the Impact of Non-Darcy Flow Effects
,”
SPE
Annual Technical Conference and Exhibition,
Texas
,
Sept. 26–29
, SPE Paper No. 90195-MS.10.2118/90195-MS
11.
Miskimins
,
J. L.
,
Lopez-Hernandez
,
H. D.
, and
Barree
,
R. D.
,
2005
, “
Non-Darcy Flow in Hydraulic Fractures: Does It Really Matter?
,”
SPE
Annual Technical Conference and Exhibition,
Texas
,
Oct. 9–12
, SPE Paper No. 96389-MS.10.2118/96389-MS
12.
Evans
,
R. D.
, and
Carroll
,
H. B.
, Jr.
,
1981
, “
Modeling of Hydraulically Fractured Gas Wells Completed in Noncontinuous Lenticular Formations
,”
ASME J. Energy Resour. Technol.
,
103
, pp.
153
158
.10.1115/1.3230828
13.
Rubin
,
M. B.
,
1983
, “
A Quantitative Evaluation of Two Classical Approximations Used to Predict the Extent of Vertical Hydraulic Fractures
,”
ASME J. Energy Resour. Technol.
,
105
, pp.
512
527
.10.1115/1.3230965
14.
Palmer
,
I. D.
, and
Luiskutty
,
C. T.
,
1986
, “
Comparison of Hydraulic Fracture Models for Highly Elongated Fractures of Variable Height
,”
ASME J. Energy Resour. Technol.
,
108
, pp.
107
115
.10.1115/1.3231249
15.
Lee
,
T. S.
,
Advani
,
S. H.
, and
Lee
,
J. K.
,
1990
, “
Three-Dimensional Modeling of Hydraulic Fractures in Layered Media: Part II—Calibrations, Parametric Sensitivity and Field Simulations
,”
ASME J. Energy Resour. Technol.
,
112
, pp.
10
19
.10.1115/1.2905705
16.
Valko
,
P.
, and
Economides
,
M. J.
,
1995
,
Hydraulic Fracture Mechanics
,
John Wiley & Sons
,
Chichester, England
.
17.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J.
,
2004
, “
Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism
,”
ASME J. Energy Resour. Technol.
,
126
, pp.
190
200
.10.1115/1.1791651
18.
Cinco-Ley
,
H.
, and
Samaniego-V
.,
F.
,
1981
, “
Transient Pressure Analysis for Fractured Wells
,”
J. Pet. Technol.
,
33
, pp.
1746
1766
.10.2118/7490-PA
19.
Valko
,
P.
,
Oligney
,
R. E.
, and
Economides
,
M. J.
,
1997
, “
High Permeability Fracturing of Gas Wells
,”
Gas TIPS
(Fall),
3
, pp.
31
40
.
20.
Rahman
,
M. K.
,
Rahman
,
M. M.
, and
Joarder
,
A. H.
,
2007
, “
Analytical Production Modeling for Hydraulically Fractured Gas Reservoirs
,”
Pet. Sci. Technol.
,
25
(
5–6
), pp.
683
704
.10.1080/10916460500411663
21.
Geertsma
,
J.
,
1974
, “
Estimating the Coefficient of Inertial Resistance in Fluid Flow Through Porous Media
,”
Soc. Pet. Eng. J.
,
14
, pp.
445
450
.10.2118/4706-PA
22.
Dranchuk
,
P. M.
, and
Abou-Kassem
,
J. H.
,
1975
, “
Calculation of Z-Factors for Natural Gases Using Equations of State
,”
J. Can. Pet. Technol.
,
14
, pp.
34
36
.10.2118/75-03-03
23.
Londono
,
F. E.
,
Archer
,
R. A.
, and
Blasingame
,
T. A.
,
2005
, “
Correlations for Hydrocarbon-Gas Viscosity and Gas Density—Validation and Correlation of Behaviour Using a Large-Scale Database
,”
SPE Res. Eval. Eng.
,
8
, pp.
561
572
.10.2118/75721-PA
24.
Penny
,
G. S.
, and
Jin
,
L.
,
1995
, “
The Development of Laboratory Correlations Showing the Impact of Multiphase Flow, Fluid and Proppant Selection Upon Gas Well Productivity
,”
SPE
Technical Conference and Exhibition,
Dallas
,
Oct. 22–25
, SPE Paper No. 30494-MS.10.2118/30494-MS
25.
Flowers
,
J. R.
,
Hupp
,
M. T.
, and
Ryan
,
J. D.
,
2003
, “
The Results of Increased Fracture Conductivity on Well Performance in a Mature East Texas Gas Fields
,”
SPE
Annual Technical Conference and Exhibition,
Colorado
,
Oct. 5–8
, SPE Paper No. 84307-MS.10.2118/84307-MS
You do not currently have access to this content.