Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA). USDA is an equal opportunity provider and employer. Mass, energy, and exergy balances are analyzed for bio-oil production in a bench-scale fast pyrolysis system developed by the USDA’s Agricultural Research Service (ARS) for the processing of commodity crops to fuel intermediates. Because mass balance closure is difficult to achieve due, in part, to the system’s small size and complexity a linear programming optimization model is developed to improve closure of elemental balances without losing the overall representation of the pyrolysis products. The model results provide an opportunity to analyze true energy and exergy balances for the system. While energy comparisons are based on heating values, exergy flows are computed using statistical relationships and other standard techniques. Comparisons were made for a variety of biomass feedstocks including energy crops and various byproducts of agriculture and bioenergy industry. The mass model allows for proper accounting of sources of mass loss and suggestions for improved system performance. Energy recovery and exergetic efficiency are compared for a variety of pyrolysis product utilization scenarios including use of biochar and noncondensable gases as heat sources. Exergetic efficiencies show high potential for energy utilization when all the pyrolysis product streams can be recycled to recuperate their internal energy. The exergy analysis can be beneficial to developing exergetic life cycle assessments (ELCA) for the fast pyrolysis process as sustainable technology for advanced biofuels production.

References

References
1.
Boateng
,
A. A.
,
Daugaard
,
D. E.
,
Goldberg
,
N.
, and
Hicks
,
K. B.
,
2007
, “
Bench-Scale Fluidized-Bed Fast Pyrolysis of Switchgrass for Bio-Oil Production
,”
Ind. Eng. Chem. Res.
,
46
, pp.
1891
1897
.10.1021/ie0614529
2.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Goldberg
,
N.
, and
Hicks
,
K. B.
,
2008
, “
Production of Bio-Oil From Alfalfa Stems by Fluidized-Bed Fast Pyrolysis
,”
Ind. Eng. Chem. Res.
,
47
(
12
), pp.
4115
4122
.10.1021/ie800096g
3.
Mullen
,
C. A.
,
Boateng
,
A. A.
,
Hicks
,
K. B.
,
Goldberg
,
N.
, and
Moreau
,
R. A.
,
2010
, “
Analysis and Comparsion of Bio-Oil Produced by Fast Pyrolysis From Three Barley Biomass/Byproduct Streams
,”
Energy Fuels
,
24
, pp.
699
706
.10.1021/ef900912s
4.
Hamdy
,
T. A.
,
2007
,
Operations Research: An Introduction
,
Pearson Prentice-Hall
,
New Jersey
.
5.
Szargut
,
J.
, and
Stanek
,
W.
,
2007
, “
Thermo-Ecological Optimization of a Solar Collector
,”
Energy
,
32
, pp.
584
590
.10.1016/j.energy.2006.06.010
6.
Ansari
,
R. M.
, and
Tade
,
M. O.
,
2000
, “
Constrained Nonlinear Multivariable Control of a Fluid Catalytic Cracking Process
,”
J. Process Control
,
10
, pp.
539
555
.10.1016/S0959-1524(99)00059-1
7.
Papadatos
,
A.
,
Berger
,
A. M.
,
Pratt
,
J. E.
, and
Barbano
,
D. M.
,
2002
, “
A Nonlinear Programming Optimization Model to Maximize Net Revenue in Cheese Manufacture
,”
J. Dairy Sci.
,
85
, pp.
2768
2785
.10.3168/jds.S0022-0302(02)74364-6
8.
Nilsson
,
D.
,
1997
, “
Energy, Exergy and Emergy Analysis of Using Straw as Fuel in District Heating Plants
,”
Biomass Bioenergy
,
13
(
1–2
), pp.
63
73
.10.1016/S0961-9534(97)00025-1
9.
Hovelius
,
K.
, and
Hansson
,
P.
,
1999
, “
Energy- and Exergy Analysis of Rape Seed Oil Methyl Ester (RME) Production Under Swedish Conditions
,”
Biomass Bioenergy
,
17
, pp.
279
290
.10.1016/S0961-9534(99)00047-1
10.
Ptasinski
,
K. J.
,
Prins
,
M. J.
, and
Pierik
,
A.
,
2007
, “
Exergetic Evaluation of Biomass Gasification
,”
Energy
,
32
, pp.
568
574
.10.1016/j.energy.2006.06.024
11.
Prins
,
M. J.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J. J. G.
,
2007
, “
From Coal to Biomass Gasification: Comparison of Thermodynamic Efficiency
,”
Energy
,
32
, pp.
1248
1259
.10.1016/j.energy.2006.07.017
12.
Braun
,
R. J.
,
Hanzon
,
L. G.
, and
Dean
,
J. H.
,
2011
, “
System Analysis of Thermochemical-Based Biorefineries for Coproduction of Hydrogen and Electricity
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012601
.10.1115/1.4003541
13.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
, and
Reddy
,
B. V.
,
2009
, “
Thermodynamic Equilibrium Model and Exergy Analysis of a Biomass Gasifier
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
031801
.10.1115/1.3185354
14.
Ojeda
,
K. A.
,
Sanchez
,
E. L.
,
Suarez
,
J.
,
Avila
,
O.
,
Quintero
,
V.
,
El-Halwagi
,
M.
, and
Kafarov
,
V.
,
2011
, “
Application of Computer-Aided Process Engineering and Exergy Analysis to Evaluate Different Routes of Biofuels Production From Lignocellulosic Biomass
,”
Ind. Eng. Chem. Res.
,
50
, pp.
2768
2772
.10.1021/ie100633g
15.
Szargut
,
J.
,
Ziebik
,
A.
, and
Stanek
,
W.
,
2002
, “
Depletion of the Non-Renewable Natural Energy Resources as a Measure of Ecological Cost
,”
Energy Convers. Manage.
,
43
, pp.
1149
1163
.10.1016/S0196-8904(02)00005-5
16.
Cornelissen
,
R. L.
, and
Hirs
,
G. G.
,
2002
, “
The Value of Exergetic Life Cycle Assessment Besides the LCA
,”
Energy Convers. Manage.
,
43
, pp.
1417
1424
.10.1016/S0196-8904(02)00025-0
17.
Dewulf
,
J.
,
Van Langenhove
,
H.
,
Muys
,
B.
,
Bruers
,
S.
,
Bakshi
,
B. R.
,
Grubb
,
G. F.
,
Paulus
,
D. M.
, and
Sciubba
,
E.
,
2008
, “
Exergy: Its Potential and Limitations in Environmental Science and Technology
,”
Environ. Sci. Technol.
,
42
(
7
), pp.
2221
2232
.10.1021/es071719a
18.
Dewulf
,
J.
,
Van Langenhove
,
H.
, and
Van De Velde
,
B.
,
2005
, “
Exergy-Based Efficiency and Renewable Assessment of Biofuel Production
,”
Environ. Sci. Technol.
,
39
(
10
), pp.
3878
3882
.10.1021/es048721b
19.
Rubio Rodriguez
,
M. A.
,
De Ruyck
,
J.
,
Roque Diaz
,
P.
,
Verma
,
V. K.
, and
Bram
,
S.
,
2011
, “
An LCA Based Indicator for Evaluation of Alternative Energy Routes
,”
Appl. Energy
,
88
, pp.
630
635
.10.1016/j.apenergy.2010.08.013
20.
Talens Peiro
,
L.
,
Lombardi
,
L.
,
Villalba Mendez
,
G.
, and
Gabarrell i Durany
,
X.
,
2010
, “
Life Cycle Assessment (LCA) and Exergetic Life Cycle Assessment (ELCA) of the Production of Biodiesel From Used Cooking Oil (UCO)
,”
Energy
,
35
, pp.
889
893
.10.1016/j.energy.2009.07.013
21.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
,
Hemisphere Publishing Corporation
,
New York
.
22.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2000
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons, Inc.
,
New York
.
23.
Boateng
,
A. A.
,
Mullen
,
C. A.
, and
Goldberg
,
N. M.
,
2010
, “
Producing Stable Pyrolysis Liquids From the Oil-Seed Presscakes of Mustard Family Plants: Pennycress (Thlaspi arvense L.) and Camelina (Camelina sativa)
,”
Energy Fuels
,
24
, pp.
6624
6632
.10.1021/ef101223a
24.
Laird
,
D. A.
,
2008
, “
The Charcoal Vision: A Win-Win-Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, While Improving Soil and Water Quality
,”
Agron. J.
,
100
, pp.
178
181
.10.2134/agrojnl2007.0161
25.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Goldberg
,
N. M.
,
Devine
,
T. E.
,
Lima
,
I. M.
, and
McMurtrey
,
J. E.
,
2010
, “
Sustainable Production of Bioenergy and Biochar From the Straw of High Biomass Soybean Lines via Fast Pyrolysis
,”
Environ. Prog. Sustainable Energy
,
29
, pp.
175
183
.10.1002/ep.10446
26.
Yan
,
S.
,
Chen
,
X.
,
Li
,
W.
,
Liu
,
H.
, and
Wang
,
F.
,
2011
, “
Nitrogen Conversion Under Rapid Pyrolysis of Two Types of Aquatic Biomass and Corresponding Blends With Coal
,”
Bioresour. Technol.
,
102
, pp.
10124
10130
.10.1016/j.biortech.2011.08.047
27.
Yaun
,
S.
,
Zhou
,
Z.
,
Li
,
J.
,
Chen
,
X.
, and
Wang
,
F.
,
2010
, “
HCN and NH3 Released From Biomass and Soybean Cake Under Rapid Pyrolysis
,”
Energy Fuels
,
24
, pp.
6166
6171
.10.1021/ef100959g
You do not currently have access to this content.