Theoretical and experimental analysis of performance of a solar desalination pond as a second stage of proposed zero discharge desalination processes is considered in this work. Major purpose of this proposed process is producing salt and potable water. Experiments are conducted for brackish wastewater with different salinity content. The relation between temperature variations of brackish water, glass, and base of solar desalination pond with condensation rate are discussed. Results indicate when brackish water temperature is increasing; the average daily production of solar desalination pond is increased considerably. Results of the mathematical modeling show good agreement with experimental data.

References

References
1.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari Nasr
,
M. R.
, and
Soltanieh
,
M.
,
2012
, “
Experimental Study of Forced Circulation Evaporator in Zero Discharge Desalination Process
,”
Desalination
,
285
, pp.
352
358
.10.1016/j.desal.2011.10.026
2.
Ortiz
,
J. M.
,
Expósito
,
E.
,
Gallud
,
F.
,
García-García
,
V.
,
Montiel
,
V.
, and
Aldaz
,
A.
,
2008
, “
Desalination of Underground Brackish Water Using an Electrodialysis System Powered Directly by Photovoltaic Energy
,”
Sol. Energy Mat. Sol. Cells
,
92
, pp.
1677
1688
.10.1016/J.Solmat.2008.07.020
3.
Shiva
Prasad
,
B. G.
,
2010
, “
Energy Efficiency, Sources and Sustainability
,”
ASME J. Energy Resour. Technol.
,
132
(2), p. 020301.
10.1115/1.4001684
4.
Fronk
,
B. M.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(2), p. 021009.10.1115/1.4001574
5.
Himelic
,
J. B.
, and
Kreith
,
F.
,
2011
, “
Potential Benefits of Plug-In Hybrid Electric Vehicles for Consumers and Electric Power Utilities
,”
ASME J. Energy Resour. Technol.
,
133
(3), p. 031001.
10.1115/1.4004151
6.
Yun
,
K.
,
Luck
,
R.
,
Mago
,
P. J.
, and
Smith
,
A.
,
2012
, “
Analytic Solutions for Optimal Power Generation Unit Operation in Combined Heating and Power Systems
,”
ASME J. Energy Resour. Technol.
,
134
(1), p. 011301.
10.1115/1.4005082
7.
Caliskan
,
H.
, and
Hepbasli
,
A.
,
2010
, “
Exergetic Analysis and Assessment of Industrial Furnaces
,”
ASME J. Energy Resour. Technol.
,
132
(1), p. 012001.
10.1115/1.4001144
8.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(2), p. 022402.
10.1115/1.3120381
9.
Abdel Rehim
,
Z. S.
, and
Ziada
,
M. A.
,
2007
, “
Thermal Behavior Study of Salt-Gradient Solar Pond Located in Cairo
,”
Energy Sources, Part A
,
30
, pp.
349
360
.10.1080/15567030600824890
10.
Roca
,
L.
,
Berenguel
,
M.
,
Yebra
,
L.
, and
Alarcón-Padilla
,
D. C.
,
2008
, “
Solar Field Control for Desalination Plants
,”
Sol. Energy
,
82
, pp.
727
786
.10.1016/j.solener.2008.03.002
11.
Tamimi
,
A.
, and
Rawajfeh
,
K.
,
2007
, “
Lumped Modeling of Solar-Evaporative Ponds Charged From the Water of the Dead Sea
,”
Desalination
,
216
, pp.
356
366
.10.1016/j.desal.2006.11.022
12.
Velmurugan
,
V.
,
Naveen Kumar
,
K. J.
,
Noorul
Haq
,
T.
, and
Srithar
,
K.
,
2009
, “
Performance Analysis in Stepped Solar Still for Effluent Desalination
,”
Energy
,
34
, pp.
1179
1186
.10.1016/j.energy.2009.04.029
13.
Zurigat
,
Y. H.
, and
Abu-Arabi
,
M. K.
,
2004
, “
Modeling and Performance Analysis of a Regenerative Solar Desalination Unit
,”
Appl. Therm. Eng.
,
24
, pp.
1061
1072
.10.1016/j.applthermaleng.2003.11.010
14.
Srithar
,
K.
, and
Mani
,
A.
,
2004
, “
Analysis of a Single Cover FRP Flat Plate Collector for Treating Tannery Effluent
,”
Appl. Therm. Eng.
,
24
, pp.
873
883
.10.1016/j.applthermaleng.2003.10.021
You do not currently have access to this content.