The production and escalation of hydrogen on a large scale is a goal toward the upheaval of green and cheap energy. During the last decades, many methods have been espoused to produce more hydrogen fuel. Right now hydrogen is hauled out from different sources, such as oil, coal, natural gas, water, etc. In case of water, the hydrogen is produced by different methods such as electrolysis, photosplitting, photoionization, photocatalysis, product analysis methods, etc. This review paper thrashes out the assessment of these assorted methods of hydrogen production from water.

References

References
1.
Hart
,
D.
,
Freund
,
P.
, and
Smith
,
A.
, 2003,
Hydrogen Today and Tomorrow
,
IEA Green House Gas R&D Programme
,
Cheltenham, UK
.
2.
Veziroglu
,
T. N.
, 2003, “
Solar Fuels: Status and Perspectives
,”
Int. J. Hydrogen Energy
,
12
, p.
99
.
3.
Bockris
,
J. O. M.
,
Dandapani
,
B.
,
Cocke
,
D.
, and
Ghoroghchian
,
J.
, 1985, “
On the Splitting of Water
,”
Int. J. Hydrogen Energy
,
10
, pp.
179
201
.
4.
Okken
,
P. A.
, 1992, “
Costs of Reducing CO2 Emissions by Means of Hydrogen Energy
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
1723
.
5.
Zweig
,
R. M.
, 1992, “
Pollution Solution Revisited
,”
Int. J. Hydrogen Energy
,
17
, pp.
219
225
.
6.
Li
,
X. Z.
,
Deng
,
Y.
,
Yan
,
Y. J.
,
Huang
,
H. F.
,
Yu
,
W. Z.
, and
Li
,
C. X.
, 2001, “
Nuclear Transmutation Detection in Pd/C Catalyst
,”
J. Energy
,
6
(
1
), pp.
80
86
.
7.
Miley
,
G. H.
, 1998, “
Product Characteristics and Energetics in Thin-Film Electrolysis Experiments
,”
Proceedings of ICCF-7, Vancouver
, Canada, Apr. 19–24, p.
241
.
8.
Kwak
,
B. S.
, 2009, “
Enhanced Hydrogen Production From Methanol/Water Photo-Splitting in TiO2 Including Pd Component
,”
Bull. Korean Chem. Soc.
,
30
(
5
), p.
1045
.
9.
Fujii
,
M.
,
Mitsushima
,
S.
,
Kamiya
,
N.
, and
Ota
,
K.
, 2002, “
Heat Measurement During Light Water Electrolysis Using Pd/Ni Rod Cathodes
,”
Proceedings of ICCF-9
, Beijing, May 19–24.
10.
Mizuno
,
T.
,
Ohmori
,
T.
, and
Akimoto
,
A.
, 2003, “
Generation of Heat and Products During Plasma Electrolysis
,”
Proceedings of ICCF-10
, Cambridge.
11.
Dufour
,
J.
,
Foos
,
J.
, and
Millot
,
J. P.
, 1995, “
Measurement of Excess Energy and Isotope Formation in the Palladium-Hydrogen System
,”
Proceedings of ICCF-5
, Monte-Carlo.
12.
Mills
,
R.
,
He
,
J.
,
Chang
,
Z.
,
Zea
,
H.
,
Akhtar
,
K.
,
Lu
,
Y.
,
Jiang
,
C.
, and
Dhandapani
,
B.
, 2005, “
Catalysis of Atomic Hydrogen to Novel Hydrides as a New Power Source
,”
230th ACS National Meeting
, Washington, D.C., Sept. 28.
13.
Ohmori
,
T.
,
Yamada
,
H.
,
Narita
,
S.
, and
Mizuno
,
T.
, 2002, “
Excess Energy and Anomalous Concentration of 41K Isotopes in Potassium Formed on/in a Re Electrode During the Plasma Electrolysis in K2CO3/H2O and K2CO3/D2O Solutions
,”
Proceedings of ICCF-9
, Beijing, May 19–24.
14.
Shahid
,
M.
,
Bidin
,
N.
,
Mat Daud
,
Y.
,
Talha
,
M.
, and
Inayat Ullah
,
M.
, 2011, “
Anomalous Hydrogen Production During Photolysis of NaHCO3 Mixed Water
,”
Int. J. Sci. Eng. Res.
,
2
(
4
), pp.
250
254
.
15.
De Giacomo
,
A.
,
Dell’Aglio
,
M.
,
de Pascale
,
O.
, and
Capitelli
,
M.
, 2007, “
Spectroscopic Investigation of Laser-Water Interaction Beyond the Breakdown Threshold Energy
,”
Spectrochim. Acta, Part B
,
62
(
2
), pp.
87
93
.
16.
Dash
,
J.
,
Noble
,
G.
, and
Diman
,
D.
, 1994, “
Surface Morphology and Microcomposition of Palladium Cathodes After Electrolysis in Acidified Light and Heavy Water: Correlation With Excess Heat
,”
Proceedings of ICCF-4
, Maui.
17.
Sino
,
S.
,
Yamamoto
,
T. A.
, and
Fujimoto
,
R.
, 2001, “
Hydrogen Evaluation From Water Dispersing Nano Particles Irradiated With Gamma Rays/Size Effect and Dose Rate Effect
,”
Scr. Mater.
,
44
, pp.
1709
1712
.
18.
Hanawa
,
T.
, 2002, “
X-ray Spectrometric Analysis of Carbon Arc Products in Water
,”
Proceedings of ICCF-8
, Lerici, Italy, pp.
147
152
.
19.
Yamada
,
H.
,
Narita
,
S.
,
Onodera
,
H.
,
Suzuki
,
H.
,
Tanaka
,
N.
,
Nyui
,
T.
, and
Ushirozawa
,
T.
, 2003, “
Analysis by Time-of-Flight Secondary Ion Mass Spectroscopy for Nuclear Products in Hydrogen Penetration Through Palladium
,”
Proceedings of ICCF-10
, Cambridge, Aug. 24–29, pp.
455
462
.
20.
Violante
,
V.
,
Castagna
,
E.
,
Sibilia
,
C.
,
Paoloni
,
S.
, and
Sarto
,
F.
, 2003, “
Analysis of Ni-Hydride Thin Film After Surface Plasmons Generation by Laser Technique
,”
Proceedings of ICCF-10
, Cambridge, Aug. 24–29, pp.
421
434
.
21.
Kudo
,
A.
, 2007, “
Recent Progress in the Development of Visible Light-Driven Powdered Photocatalysts for Water Splitting
,”
Int. J. Hydrogen Energy
,
32
, pp.
2673
2678
.
22.
Yamada
,
H.
,
Narita
,
S.
,
Fujii
,
Y.
,
Sato
,
T.
,
Sasaki
,
S.
, and
Ohmori
,
T.
, “
Production of Ba and Several Anomalous Elements in Pd Under Light Water Electrolysis
,”
Proceedings of ICCF-9
, Beijing, May 19–24, p.
123
.
23.
Zeng
,
K.
, and
Zhan
,
D.
, 2010, “
Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications
,”
Prog. Energy Combust. Sci.
,
36
(
3
), pp.
307
326
.
24.
Shahid
,
M.
, and
Bidin
,
N.
, 2011, “
Enhancement of Hydrogen Using Green Laser From Plasma Electrolysis of Water
,”
J. Int. Pulsed Lasers Appl. Adv. Phys.
,
1
(
3
), pp.
65
68
.
25.
Kwak
,
B. S.
,
Chae
,
J.
,
Kim
,
J.
, and
Kang
,
M.
, 2009, “
Enhanced Hydrogen Production From Methanol/Water Photo-Splitting in TiO2 Including Pd Component
,”
Bull. Korean Chem. Soc.
,
30
(
5
), pp.
1047
1053
.
26.
Bertuccelli
,
D.
, and
Sandoval
,
H. F. R.
, 2001, “
Perturbations of Conduction in Liquids by Pulsed Laser-Generated Plasm
,”
IEEE J. Quantum Electron.
,
37
(
7
), pp.
856
862
.
27.
Castano
,
C. H.
,
Lipson
,
A. G.
,
Kim
,
S. O.
, and
Miley
,
G. H.
, 2002, “
Calorimetric Measurements During Pd-Ni Thin Film-Cathodes Electrolysis in Li2SO4/H2O Solution
,”
Proceedings of ICCF-9
, Beijing, China, May 19–24, pp.
24
28
.
28.
Gondal
,
M. A.
,
Hameed
,
A.
,
Yamani
,
Z. H.
, and
Suwaiyan
,
A.
, 2004, “
Production of Hydrogen and Oxygen by Water Splitting Using Laser Induced Photo-Catalysis Over Fe2O3
,”
Appl. Catal., A
,
268
, pp.
159
167
.
29.
Cano
,
C. S.
, 2002, “
Comparison of Heat Output and Microchemical Changes of Palladium Cathodes Under Electrolysis in Acidified Light and Heavy Water
,” M.S. thesis, Portland State University, Portland, OR.
30.
Osterloh
,
F. E.
, 2008, “
Inorganic Materials as Catalysts for Photochemical Splitting of Water
,”
Chem. Mater.
,
20
, pp.
35
54
.
31.
Jom
,
B.
,
Dandapani
,
B.
, and
Was
,
J. C.
, 1989,
Advances in Solar Energy
,
Plenum Press
,
New York
, p.
171
.
32.
Sacchi
,
C. A.
, 1991, “
Laser-Induced Electric Breakdown in Water
,”
J. Opt. Soc. Am.
,
8
, pp.
337
345
.
33.
Ikeda
,
M.
,
Kusumoto
,
Y.
,
Yang
,
H.
,
Somekawa
,
S.
,
Uenjyo
,
H.
,
Abdulla-Al-Mamun
,
Md.
, and
Horie
,
Y.
, 2008, “
Photocatalyic Hydrogen Production Enhanced by Laser Ablation in Water-Methanol Mixture Containing Titanium(IV) Oxide and Graphite Silica
,”
Catal. Commun.
,
9
, pp.
1329
1333
.
34.
Mills
,
R.
,
Nansteel
,
M.
, and
Ray
,
P.
, 2003, “
Waterbath Calorimetric Study of Excess Heat Generation in Resonant Transfer Plasmas
,”
Plasma Phys.
,
69
, pp.
131
158
.
35.
Kozima
,
H.
, 2003, “
CF-Matter and the Cold Fusion Phenomenon
,”
Proceedings of ICCF-10
, Cambridge.
36.
Sim
,
K. Y.
,
Son
,
Y. M.
, and
Kim
,
J. W.
, 1993, “
Hydrogen Energy
,”
Int. J. Hydrogen Energy
,
18
, pp.
287
290
.
37.
Bernhauser
,
C.
, and
Knoche
,
K. F.
, 1992, “
Hydrogen Energy Progress IX
,”
Proeedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
103
.
38.
Lundberg
,
M.
, 1993, “
Model Calculations on Some Feasible Two-Step Water Splitting Processes
,”
Int. J. Hydrogen Energy
,
18
, pp.
369
376
.
39.
Yoshida
,
K.
, and
Kameyama
,
H.
, 1990, “
A Simulation Study of the UT-3 Thermochemical Hydrogen Production Process
,”
Int. J. Hydrogen Energy
,
15
(
3
), pp.
171
178
.
40.
Sato
,
A. R.
, 1990, “
Hydrogen Energy VIII
,”
Proceedings of the Eighth World Hydrogen Energy Conference
, Honolulu, HI.
41.
Aihara
,
M.
, and
Sakurai
,
M.
, 1990, “
Hydrogen Energy VIII
,”
Proceedings of the Eighth World Hydrogen Energy Conference
, Honolulu, HI.
42.
Amir
,
R.
,
Shiizaki
,
S.
,
Yamamoto
,
K.
,
Kabe
,
T.
, and
Kameyama
,
H.
, 1993, “
Design Development of Iron Solid Reactants in the UT-3 Water Decomposition Cycle Based on Ceramic Support Materials
,”
Int. J. Hydrogen Energy
,
18
, pp.
283
286
.
43.
Onstott
,
E.
, 1992, “
Thermochemistry of Iodine Oxidation of Sulfite in Cerium and Praseodymium Oxide-Sulfite-Sulfate-Hydrate Compositions to Yield Hydrogen Iodide by Hydrolysis and Disulfur by Concomitant Disproportionation and Comparison to the Behavior of Lanthanum
,”
J. Phys. Chem.
,
95
(
6
), pp.
2520
2525
.
44.
Cheng-Lin
,
P.
,
Jie
,
Y.
,
Weimen
,
G.
,
Long
,
Z.
, and
Jun
,
P.
, 1992, “
Hydrogen Energy Progress IX
,”
Proeedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
271
.
45.
Momirlan
,
M.
, 1997, “
Hydrogen Power: Theoretical and Engineering Solutions
,”
Proceedings of Hypothesis II
, p.
205
.
46.
Getoff
,
N.
,
Li
,
G.
,
Stockenhuber
,
M.
, and
Kotchev
,
K.
, 1992, “
Hydrogen Energy Progress IX
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
537
.
47.
Momirlan
,
M.
, 1997, “
Recent Direction of Hydrogen Production
,”
Sci. Bull. Politehnica Univ. Bucharest, Ser. B: Chem. Mater. Sci.
,
65
, pp.
51
59
.
48.
Badescu
,
V.
, and
Momirlan
,
M.
, 1997, “
Statistics of TiO2 Crystal Growth in Air on a Metallic Surface Heated at Temperatures in the Range of 900-1100°C
,”
J. Cryst. Growth
,
169
(
2
), pp.
309
316
.
49.
Momirlan
,
M.
, and
Sayigh
,
A. A. M.
, 1994, “
The Use of Solar Energy in Hydrogen Production
,”
Renewable Energy
,
9
(
1
), pp.
1258
1261
.
50.
Momirlan
,
M.
, and
Veziroglu
,
T. N.
, 1997, “
Clean Energy for the New Century
,”
Proceedings of the Florence World Energy Research Symposium ’97
, Florence, p.
39
.
51.
Dixon
,
R.
, 2007, “
Advancing Towards a Hydrogen Energy Economy: Status, Opportunities and Barriers
,”
Mitigation Adapt. Strategies Global Change
,
12
(
3
), pp.
325
341
.
52.
Pop
,
G.
, and
Momirlan
,
M.
, 1997, “
Hydrogen Power Technical and Engineering Solutions
,”
Proceedings of Hypothesis II
, pp.
18
22
.
53.
Midilli
,
A.
,
Ay
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
, 2005, “
On Hydrogen and Hydrogen Energy Strategies: I: Current Status and Needs
,”
Renewable Sustainable Energy Rev.
,
9
(
3
), pp.
255
271
.
54.
Sarkissyan
,
A. G.
,
Putnyn
,
E. V.
,
Arakelian
,
V. M.
,
Aroutinian
,
V. M.
, and
Begoian
,
K. H.
, 1992, “
Hydrogen Energy Progress IX
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
591
.
55.
Specht
,
M.
, 1992, “
Hydrogen Energy Progress IX
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
527
.
56.
Linkous
,
C. A.
,
Mingo
,
T. E.
, and
Muradov
,
N. Z.
, 1992, “
Hydrogen Energy Progress IX
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
545
.
57.
Traverse
,
J. P.
,
Organista
,
M.
,
Aries
,
L.
, and
Komla
,
A.
, 1992, “
Hydrogen Energy Progress IX
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
667
.
58.
Babu
,
K. S. C.
,
Pandey
,
R. N.
, and
Srivastava
,
O. N.
, 1992, “
Hydrogen Energy Progress IX
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
651
.
59.
Pong
,
W.
, 1992, “
Hydrogen Energy Progress IX
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
605
.
60.
Pinto
,
F. A. L.
,
Troshina
,
O.
, and
Lindblad
,
P.
, 2002, “
A Brief Look at Three Decades of Research on Cyanobacterial Hydrogen Evolution
,”
Int. J. Hydrogen Energy
,
27
, pp.
1209
1215
.
61.
Miyake
,
J.
, and
Kawamura
,
S.
, 1987, “
Efficiency of Light Energy Conversion to Hydrogen by the Photosynthetic Bacterium Rhodobacter Sphaeroides
,”
Int. J. Hydrogen Energy
,
39
, pp.
147
149
.
62.
Venkataraman
,
C.
, and
Vatsala
,
I. M.
, 1990, “
Hydrogen Energy Progress VIII
,”
Proceedings of the Eighth World Hydrogen Energy Conference
, Honolulu, p.
781
.
63.
Singh
,
S. P.
,
Srivastava
,
S. C.
, and
Pandey
,
K. D.
, 2007, “
Prospects of Sugarcane Milling Waste Utilization for Hydrogen Production in India
,”
Energy Policy
,
35
(
8
), pp.
4164
4168
.
64.
Hall
,
D. O.
, and
Rao
,
K. K.
, 1998, “
Hydrogen Photoproduction by Rhodobactersphaeroides Immobilised on Polyurethane Foam
,”
Biotechnol. Lett.
,
20
(
11
), pp.
1007
1009
.
65.
Markov
,
S. A.
,
Krishna
,
R. K.
, and
Hall
,
D. O.
, 1992, “
Hydrogen Energy Progress IX
,”
Proceedings of the Ninth World Hydrogen Energy Conference
, Paris, p.
641
.
66.
Verfondern
,
K.
, ed., 2007,
Nuclear Energy for Hydrogen Production
, Vol.
58
,
Forschungszentrum Jülich, GmbH, Jülich
,
Germany
.
67.
Forsberg
,
C. W.
, 2007, “
Is Hydrogen the Future of Nuclear Energy
,”
Proceedings of the International Topical Meeting on the Safety and Technology of Nuclear Hydrogen Production, Control and Management
, Boston, June 24–28.
68.
Dunn
,
S.
, 2002, “
Hydrogen Futures: Toward a Sustainable Energy System
,”
Int. J. Hydrogen Energy
,
27
(
3
), pp.
235
264
.
69.
Forsberg
,
C. W.
, 2008, “
Sustainability by Combining Nuclear, Fossil, and Renewable Energy Sources
,”
Prog. Nucl. Energy
,
51
(
1
), pp.
192
200
.
You do not currently have access to this content.