Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the renormalization group (RNG) k-ε (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 μm and 125 μm were obtained for the RANS and LES cases, respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-ε model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl nine-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.

References

References
1.
Naber
,
J. D.
, and
Siebers
,
D. L.
, 1996, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,” SAE Paper No. 960034.
2.
Higgins
,
B. S.
, and
Siebers
,
D. E.
, 2001, “
Measurement of the Flame Lift-Off Location on DI Diesel Sprays Using OH Chemiluminescence
,” SAE Paper No. 2001-01-0918.
3.
Siebers
,
D. L.
, and
Higgins
,
B. S.
, “
Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions
,” SAE Paper No. 2001-01-0530.
4.
Som
,
S.
, and
Aggarwal
,
S. K.
, 2010, “
Effects of Primary Breakup Modeling on Spray and Combustion Characteristics of Compression Ignition Engines
,”
Combust. Flame
,
157
, pp.
1179
1193
.
5.
Siebers
,
D. L.
, 1998, “
Liquid-Phase Fuel Penetration in Diesel Sprays
,” SAE Paper No. 980809.
6.
Pickett
,
L. M.
, and
Siebers
,
D. L.
, 2004, “
Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure
,”
Combust. Flame
,
138
, pp.
114
135
.
7.
Pickett
,
L. M.
, and
Siebers
,
D. L.
, 2002, “
An Investigation of Diesel Soot Formation Processes Using Micro-Orifices
,”
Proc. Combust. Inst.
,
29
, pp.
655
662
.
8.
Idicheria
,
C. A.
, and
Pickett
,
L. M.
, 2007, “
Effect of EGR on Diesel Premixed-Burn Equivalence Ratio
,”
Proc. Combust. Inst.
,
31
, pp.
2931
2938
.
9.
Idicheria
,
C. A.
, and
Pickett
,
L. M.
, 2007, “
Quantitative Mixing Measurements in a Vaporizing Diesel Spray by Rayleigh Imaging
,” SAE Paper No. 2007-01-0647.
10.
Pickett
,
L. M.
,
Manin
,
J.
,
Genzale
,
C. L.
,
Siebers
,
D. L.
,
Musculus
,
M. P. B.
, and
Idicheria
,
C. A.
, 2011, “
Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction
,” SAE Paper No. 2011-01-0686.
11.
Engine Combustion Network
,” Sandia National Laboratories, http://www.sandia.gov/ecn/http://www.sandia.gov/ecn/
12.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
, 2003, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,” SAE Paper No. 2003-01-1043.
13.
Kong
,
S. C.
,
Sun
,
Y.
, and
Reitz
,
R. D.
, 2007, “
Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
245
251
.
14.
Vishwanathan
,
G.
, and
Reitz
,
R. D.
, 2008, “
Numerical Predictions of Diesel Flame Lift-Off Length and Soot Distributions Under Low Temperature Combustion Conditions
,” SAE Paper No. 2008-01-1331.
15.
Som
,
S.
,
Ramirez
,
A. I.
,
Aggarwal
,
S. K.
,
Kastengren
,
A. L.
,
El-Hannouny
,
E. M.
,
Longman
,
D. E.
,
Powell
,
C. F.
, and
Senecal
,
P. K.
, 2009, “
Development and Validation of a Primary Breakup Model for Diesel Engine Applications
,” SAE Paper No. 2009-01-0838.
16.
Golovichev
,
V.
, “
Mechanisms: Combustion Chemistry
,” Chalmers University of Technology, http://www.tfd.chalmers.se/~valeri/MECH.htmlhttp://www.tfd.chalmers.se/~valeri/MECH.html
17.
Lucchini
,
T.
,
D’Errico
,
G. D.
,
Ettore
,
D.
, and
Ferrari
,
G.
, 2009, “
Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels
,” SAE Paper No. 2009-01-1971.
18.
Azimov
,
U.
,
Kawahara
,
N.
,
Tomita
,
E.
, and
Tsuiboi
,
K.
, 2010, “
Evaluation of the Flame Lift-Off Length in Diesel Spray Combustion Based on Flame Extinction
,”
J. Therm. Sci. Technol.
,
5
(
2
), pp.
238
251
.
19.
Tap
,
F. A.
, and
Veynante
,
D.
, 2005, “
Simulation of Flame Lift-Off on a Diesel Jet Using a Generalized Flame Surface Density Modeling Approach
,”
Proc. Combust. Inst.
,
30
, pp.
919
926
.
20.
Karrholm
,
F. P.
,
Tao
,
F.
, and
Nordin
,
N.
, 2008, “
Three-Dimensional Simulation of Diesel Spray Ignition and Flame Lift-Off Using OpenFOAM and KIVA-3V CFD Codes
,” SAE Paper No. 2008-01-0961.
21.
Golovitchev
,
V. I.
,
Nordin
,
N.
,
Jarnicki
,
R.
, and
Chomiak
,
J.
, 2000, “
3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model
,” SAE Paper No. 2000-01-1891.
22.
Venugopal
,
R.
, and
Abraham
,
J.
, 2007, “
A Numerical Investigation of Flame Lift-Off in Diesel Jets
,”
Combust. Sci. Technol.
,
179
, pp.
2599
2618
.
23.
Banerjee
,
S.
, and
Rutland
,
C.
, 2011, “
Numerical Study of Diesel Combustion Engines
,” SAE Paper No. 2011-01-0823.
24.
Senecal
,
P. K.
,
Richards
,
K. J.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Sethaji
,
T.
, 2007, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,” SAE Paper No. 2007-01-0159.
25.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
, 2008, convergetm (Version 1.2) Manual, Convergent Science, Inc., Middleton, WI.
26.
Som
,
S.
, 2009, “
Development and Validation of Spray Models for Investigating Diesel Engine Combustion and Emissions
;” Ph.D. thesis, University of Illinois at Chicago, Chicago, IL.
27.
Reitz
,
R. D.
, 1987, “
Modeling Atomization Processes in High Pressure Vaporizing Sprays
,”
Atomization Spray Technol.
,
3
, pp.
309
337
.
28.
Patterson
,
M. A.
, and
Reitz
,
R. D.
, 1998, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emissions
,” SAE Paper No. 980131.
29.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
, 2000, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
, pp.
62
80
.
30.
Post
,
S. L.
, and
Abraham
,
J.
, 2002, “
Modeling the Outcome of Drop-Drop Collisions in Diesel Sprays
,”
Int. J. Multiphase Flow
,
28
, pp.
997
1019
.
31.
Lu
,
T. F.
,
Law
,
C. K.
,
Yoo
,
C. S.
, and
Chen
,
J. H.
, 2009, “
Dynamic Stiffness Removal for Direct Numerical Simulations
,”
Combust. Flame
,
156
(
8
), pp.
1542
1551
.
32.
Nerva
,
J. G.
,
Genzale
,
C. L.
,
Oliver
,
J. M.
, and
Pickett
,
L. M.
, 2011, “
Fundamental Spray and Combustion Measurements of Biodiesel Under Diesel Steady Conditions
,” (unpublished).
33.
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Som
,
S.
, and
Longman
,
D. E.
, 2011, “
A Reduced Mechanism for Biodiesel Surrogates for Low Temperature Chemistry
,”
7th US Combustion Inst
itute Meeting, Paper No. 18.
34.
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 2010, “
Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate
,”
Combust. Flame
,
157
, pp.
893
908
.
35.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z.
,
Plomer
,
M.
, and
Lu
,
T.
, 2011, “
Modeling Biodiesel Spray Flame Lift-Off and Emission Characteristics Using a Detailed Mechanism for Methyl Decanoate as Surrogate
,” SAE Paper No. 11PFL-0227.
36.
Brakora
,
J. L.
,
Ra
,
Y.
,
Reitz
,
R. D.
,
McFarlane
,
J.
, and
Daw
,
C. S.
, 2008, “
Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulation
,” SAE Paper No. 2008-01-1378.
37.
Som
,
S.
, and
Longman
,
D. E.
, 2011, “
Numerical Study Comparing the Combustion and Emission Characteristics of Biodiesel to Petrodiesel
,”
Energy Fuels
,
25
, pp.
1373
1386
.
38.
Pickett
,
L. M.
,
Siebers
,
D. L.
, and
Idicheria
,
C. A.
, 2005, “
Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets
,” SAE Paper No. 2005-01-3843.
39.
Pickett
,
L. M.
,
Kook
,
S.
,
Persson
,
H.
, and
Andersson
,
O.
, 2009, “
Diesel Fuel Jet Lift-Off Stabilization in the Presence of Laser-Induced Plasma Ignition
,”
Proc. Combust. Inst.
,
32
, pp.
2793
2800
.
You do not currently have access to this content.